• Title/Summary/Keyword: Hydrogen Leakage

Search Result 201, Processing Time 0.033 seconds

Fundamental evaluation of hydrogen behavior in sodium for sodium-water reaction detection of sodium-cooled fast reactor

  • Tomohiko Yamamoto;Atsushi Kato;Masato Hayakawa;Kazuhito Shimoyama;Kuniaki Ara;Nozomu Hatakeyama;Kanau Yamauchi;Yuhei Eda;Masahiro Yui
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.893-899
    • /
    • 2024
  • In a secondary cooling system of a sodium-cooled fast reactor (SFR), rapid detection of hydrogen due to sodium-water reaction (SWR) caused by water leakage from a heat exchanger tube of a steam generator (SG) is important in terms of safety and property protection of the SFR. For hydrogen detection, the hydrogen detectors using atomic transmission phenomenon of hydrogen within Ni-membrane were used in Japanese proto-type SFR "Monju". However, during the plant operation, detection signals of water leakage were observed even in the situation without SWR concerning temperature up and down in the cooling system. For this reason, the study of a new hydrogen detector has been carried out to improve stability, accuracy and reliability. In this research, the authors focus on the difference in composition of hydrogen and the difference between the background hydrogen under normal plant operation and the one generated by SWR and theoretically estimate the hydrogen behavior in liquid sodium by using ultra-accelerated quantum chemical molecular dynamics (UA-QCMD). Based on the estimation, dissolved H or NaH, rather than molecular hydrogen (H2), is the predominant form of the background hydrogen in liquid sodium in terms of energetical stability. On the other hand, it was found that hydrogen molecules produced by the sodium-water reaction can exist stably as a form of a fine bubble concerning some confinement mechanism such as a NaH layer on their surface. At the same time, we observed experimentally that the fine H2 bubbles exist stably in the liquid sodium, longer than previously expected. This paper describes the comparison between the theoretical estimation and experimental results based on hydrogen form in sodium in the development of the new hydrogen detector in Japan.

Hydrogen Response Characteristics of Tantalum Oxide Layer Formed by Rapid Thermal Oxidation at High Temperatures (고온에서 급속열산화법으로 형성된 탄탈륨산화막의 수소응답특성)

  • Seong-Jeen Kim
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.19-24
    • /
    • 2023
  • Since silicon having a band gap energy of about 1.12 eV are limited to a maximum operating temperature of less than 250 ℃, the sample with MIS structure based on the SiC substrate of wide-band gap energy was manufactured and the hydrogen response characteristics at high temperatures were investigated. The dielectric layer applied here is a tantalum oxide layer that is highly permeable to hydrogen gas and shows stability at high temperatures. It was formed by RTO at a temperature of 900 ℃ with tantalum. The thickness, depth profiles, and leakage current of the tantalum oxide layer were analyzed through TEM, SIMS, and leakage current characteristics. For the hydrogen gas response characteristics, the capacitance change characteristics were investigated in the temperature range from room temperature to 400 ℃ for hydrogen gas concentrations from 0 to 2,000 ppm. As a result, it was confirmed that the sample exhibited excellent sensitivity and a response time of about 60 seconds.

Analysis on Fitting Characteristics of a Metal-Sealing Pipe of the Hydrogen Fuel Tank for FCEV (FCEV용 고압연료탱크 메탈씰링 파이프의 체결특성 해석)

  • Lee, J.M.;Jeong, J.H.;Chon, M.S.;Lee, H.W.
    • Transactions of Materials Processing
    • /
    • v.27 no.1
    • /
    • pp.54-59
    • /
    • 2018
  • In connecting parts of a hydrogen fuel cell vehicle, since the rubber ring is permeable to hydrogen, it is necessary to use a metal sealing structure which ensures leakage stability. Finite element analysis was performed to verify the fitting characteristics of the metal sealing structure, which is used to connect the pipe to a high pressure hydrogen FCEV tank. Deformation shape, contact distance and axial load were compared experimentally and these values were in agreement with each other. In the contact surface, between the pipe and the fitting body, the stress at the edge of the contact surface was higher than the center point, which was considered to be a good characteristic in view point of the leakage. The location of the contact points has almost no change in the upper part of the fitting, but that of the lower parts move downward as the fastening amount increases. The contact pressure at the lower part is maintained at the same constant level.

Implantation of portable hydrogen alarm system based on palladium coated single mode optical fiber sensor (팔라듐이 코팅된 단일모드 광섬유 센서를 이용한 수소 경보 시스템 구현)

  • Mun, Nam-Il;Yang, Byung-Cheol;Kim, Kwang-Taek;Kim, Tae-Un
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.269-273
    • /
    • 2009
  • In this paper, a study on a portable hydrogen alarm system based on the palladium coated single mode fiber sensor has been reported. The fabricated hydrogen sensor exhibited 0.14 dB, 0.41 dB and 0.54 dB optical intensity variation when it was exposed by the nitrogen and hydrogen mixed gas containing 0.5 %, 1 % and 4 % of the hydrogen concentration, respectively. The fabricated sensor exhibited 20 second of response time and 120 second of recovery time for 4 % hydrogen containing gas. The fiber optics layout and software algorithm for detection of hydrogen leakage have been presented. The implanted portable hydrogen alarm system successfully generated an alarm signal when a 4 % hydrogen containing gas was leaked out.

Characteristics of Leakage Flow on Regenerative Blower and Leakage-reducing Design for Performance Enhancement (재생형 블로워의 누설유동 특성과 누설유량 저감을 통한 성능 향상)

  • Choi, Min-Ho;Kim, Young-Hoon;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.4
    • /
    • pp.57-63
    • /
    • 2011
  • Regenerative blower is suitable for hydrogen recirculation in fuel cell vehicle due to its capability of high pressure rise in single stage. Numerical models were applied to investigate inner gap leakage flow characteristics. A leakage flow in the inner gap is dominantly affected by pressure gradient. Therefore a blower with concentric channel type was suggested as one of modified models for reducing the inner gap pressure gradient. Also numerical results such as pressure rise, efficiency, leakage flow rate and torque were compared between modified and reference models. The performance of concentric channel type was improved as a result of reduced leakage flow.

Numerical analysis study on the concentration change at hydrogen gas release in semi-closed space (수치해석을 통한 반밀폐공간 내 수소가스 누출 시 농도변화에 관한 연구)

  • Baek, Doo-San;Kim, Hyo-Gyu;Park, Jin-Yuk;Yoo, Yong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.25-36
    • /
    • 2021
  • Hydrogen in hydrogen-electric vehicles has a wide range of combustion and explosion ranges, and is a combustible gas with a very fast flame propagation speed, so it has the risk of leakage, diffusion, ignition, and explosion. The fuel tank has a Thermally active Pressure Relief Device (TPRD) to reduce the risk of explosion and other explosions, and in the event of an accident, hydrogen inside the tank is released outside before an explosion or fire occurs. However, if an accident occurs in a semi-closed space such as an underground parking lot, the flow of air flow is smaller than the open space, which can cause the concentration of hydrogen gas emitted from the TPRD to accumulate above the explosion limit. Therefore, in this study, the leakage rate and concentration of hydrogen over time were analyzed according to the diameter of the nozzle of the TPRD. The diameter of the nozzle was considered to be 1 mm, 2.5 mm and 5 mm, and ccording to the diameter of the nozzle, the concentration of hydrogen in the underground parking lot increases in a faster time with the diameter of the nozzle, and the maximum value is also analyzed to be larger with the diameter of the nozzle. In underground parking lots where air currents are stagnant, hydrogen concentrations above LFL (Lowe Flammability Limit) were analyzed to be distributed around the nozzle, and it was analyzed that they did not exceed UFL (Upper Flammability Limit).

Theoretical Study on the Behavior of Momentum-controlled Buoyant Jet and Flame of Hydrogen (운동량에 의해 제어되는 수소 부양 제트 및 화염의 거동에 관한 이론적 해석)

  • Yang, Won;Won, Sang-Hee;Kim, Min-Kook;Chung, Suk-Ho;Kim, Jong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.3
    • /
    • pp.34-41
    • /
    • 2005
  • Hydrogen safety is one of the key technical issue with growing attention on utilization of hydrogen energy. This study is aimed to predict behavior of momentum-controlling buoyant jet and flame caused by hydrogen leakage from a high pressured tank. Approximate solutions were derived for the case of turbulent buoyant jet and diffusion flame in still air. In case of hydrogen jet with low Froude number (100-4000), computed jet trajectories were compared with experimental data and showed good agreement with them. Jet and flame trajectories and flame length of hydrogen are predicted and compared with the buoyant flame of propane. The results well show that buoyancy is dominant in the range of low Froude number, while initial momentum is dominant in the range of high Froude number. That effect is more distinct for hydrogen flame than the case of propane.

  • PDF

Theoretical Study on the Behavior of Momentum-controlled Buoyant Jet and Flame of Hydrogen (운동량에 의해 제어되는 수소 부양 제트 및 화염의 거동에 관한 이론적 해석)

  • Yang, Won;Kim, Jong-Soo;Won, Sang-Hee;Kim, Min-Kook;Chung, Suk-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.207-214
    • /
    • 2005
  • Hydrogen safety is one of the key technical issue with growing attention on utilization of hydrogen energy. This study is aimed to predict behavior of momentum-controlling buoyant jet and flame caused by hydrogen leakage from a high pressured tank. Approximate solutions were derived for the case of turbulent buoyant jet and diffusion flame in still air. In case of hydrogen jet with low Froude number (100-4000), computed jet trajectories were compared with experimental data and showed good agreement with them. Jet and flame trajectories and flame length of hydrogen are predicted and compared with the buoyant flame of propane. The results well show that buoyancy is dominant in the range of low Froude number, while initial momentum is dominant in the range of high Froude number. That effect is more distinct for hydrogen flame than the case of propane.

  • PDF

Review and new trends of hydrogen gas sensor technologies (수소센서 기술의 고찰과 최근동향)

  • Han, Sang-Do
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.67-86
    • /
    • 2010
  • Hydrogen is emerging as clean fuel and important industrial raw materials. The hydrogen gas is not sensed by the human olfactory system, But the combustion characteristics of hydrogen is that the ignition is very easy, the propagation speed of the flame is very fast and explosion limits is a wide range of 4 %~75 %. Therefore it is extremely in danger, and the need for its leakage detection technologies is especially important in places such as a production, transportation, storage and usage. The hydrogen sensors are classified with ceramic type, semiconductor type, optical type, electrochemical type and so on. Hydrogen sensors and their technologies are reviewed in detail for materials, fabrication process, sensing characteristics, good point and faults, and production and utilization of sensors be discussed.

An Experimental Study on the Explosion of Hydrogen Tank for Fuel-Cell Electric Vehicle in Semi-Closed Space (반밀폐공간에서 발생되는 차량용 수소연료탱크 폭발 실험)

  • Park, Jinouk;Yoo, Yongho;Kim, Hwiseong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.73-80
    • /
    • 2021
  • Recently, Korea has established a plan for the supply of hydrogen vehicles and is promoting the expansion of the supply. Risk factors for hydrogen vehicles are hydrogen leakage, jet fire, and explosion. Therefore Safety measures are necessary for this hazard. In addition, risks in semi-closed spaces such as tunnels, underground roads, and underground parking lots should be analyzed. In this study, an explosion experiment was conducted on a hydrogen tank used in a hydrogen vehicle to analyze the risk of a hydrogen vehicle explosion accident that may occur in a semi-closed space. As results, the effect on the structure and the human body was analyzed using the overpressure and impulse values for each distance generated during the explosion.