• Title/Summary/Keyword: Hydrogen Generation System

Search Result 280, Processing Time 0.023 seconds

A study on the Temperature Profile with combustion conditions change for the Optimum drive of Plate type Hydrogen Generation Sytem (평판형 수소생산시스템의 최적 운전조건을 위한 연소조건별 분위기 온도 연구)

  • Heo, Su-Bin;Park, Jae-Min;Yoon, Bong-Seock;Lee, Do-Hyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.238-243
    • /
    • 2012
  • The purpose of this study is to search the temperature-rise time conditions for adequate reforming temperature region of hydrogen generation system. And we measured theexhaust gas at the exit of that system in order to know the combustion state of hydrogen generation system's combustor. We found the optimum condition of heat supply and temperature-rise time at well burned state. And the results were nearly same when the reactants were entered to each reactors. We will further consider the effects of temperature change near the exothermic reactors and find out hydrogen yield through reforming experiment.

Design and Self-sustainable Operation of 1 kW SOFC System (1kW 고체산화물 연료전지(SOFC) 시스템 설계 및 자열운전)

  • Lee, Tae-Hee;Choi, Jin-Hyeok;Park, Tae-Sung;Yoo, Young-Sung;Nam, Suk-Woo
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.5
    • /
    • pp.384-389
    • /
    • 2009
  • KEPRI (Korea Electric Power Research Institute) has studied planar type solid oxide fuel cell (SOFC) stacks using anode-supported cells and kW class co-generation systems for residential power generation. In this work, a 1 kW SOFC system consisted of a hot box part, a cold BOP (balance of plant) part, and a hot water reservoir. The hot box part contained a SOFC stack made up of 48 cells, a fuel reformer, a catalytic combustor, and heat exchangers. Thermal management and insulation system were especially designed for self-sustainable operation in that system. A cold BOP part was composed of blowers, pumps, a water trap, and system control units. When the 1 kW SOFC stack was tested using hydrogen at $750^{\circ}C$, the stack power was about $1.2\;kW_e$ at 30 A and $1.6\;kW_e$ at 50 A. Turning off an electric furnace, the SOFC system was operated using hydrogen and city gas without any external heat source. Under self-sustainable operation conditions, the stack power was about $1.3\;kW_e$ with hydrogen and $1.2\;kW_e$ with city gas respectively. The system also recuperated heat of about $1.1\;kW_{th}$ by making hot water.

The Technology Development and Substantiation of Small Hydrogen Powered Vessel (소형 수소추진선박 기술 개발 및 실증 )

  • JAEWAN LIM;SEJUN LEE;SANGJIN YOON;OCKTAECK LIM
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.555-561
    • /
    • 2023
  • In this study, we proposed a standard model for the design, construction and demonstration of the technology development and substantiation of small hydrogen powered vessel in order to respond to the alternative fuel-using vessel market that requires the use of low-carbon/carbon-free fuel as a greenhouse gas reduction measure. The hydrogen fuel cell-based electric propulsion system developed through this is optimized through performance and durability tests on the land-based test site (LBTS), and the electric propulsion system applied to this result is mounted on a small hydrogen propulsion vessel and operated. Simultaneously, through the digital twin technology between the LBTS and the hydrogen-propelled vessel on the sea, the technology that can predict and diagnose the problems that can occur in the electric propulsion system of the vessel is applied to carry out the empirical study of the hydrogen-propelled vessel. In addition, we propose a commercialization model by analyzing the economic feasibility of the demonstration vessel.

Solid Oxide Fuel Cells for Power Generation and Hydrogen Production

  • Minh, Nguyen Q.
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Solid oxide fuel cells (SOFCs) have been under development for a variety of power generation applications. Power system sizes considered range from small watt-size units (e.g., 50-W portable devices) to very large multi-megawatt systems (e.g., 500-MW base load power plants). Because of the reversibility of its operation, the SOFC has also been developed to operate under reverse or electrolysis mode for hydrogen production from steam (In this case, the cell is referred to as solid oxide electrolysis cell or SOEC.). Potential applications for the SOEC include on-site and large-scale hydrogen production. One critical requirement for practical uses of these systems is long-term performance stability under specified operating conditions. Intrinsic material properties and operating environments can have significant effects on cell performance stability, thus performance degradation rate. This paper discusses potential applications of the SOFC/SOEC, technological status and current research and development (R&D) direction, and certain aspects of long-term performance degradation in the operation of SOFCs/SOECs for power generation/hydrogen production.

Development and Performance Test of SOFC Co-generation System for RPG (SOFC를 이용한 가정용 열병합 발전시스템 개발 및 성능시험)

  • Lee, Tae-hee;Choi, Jin-Hyeok;Park, Tae-Sung;Choi, Ho-Yun;Yoo, Young-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.361-364
    • /
    • 2009
  • KEPRI has studied planar type SOFC stacks using anode-supported single cells and kW class co-generation systems for residential power generation. A 1kW class SOFC system consisted of a hot box part, a cold BOP part and a water reservoir. A hot box part contains a SOFC stack made up of 48 cells with $10{\times}10cm^2$ area and ferritic stainless steel interconnectors, a fuel reformer, a catalytic combustor and heat exchangers. Thermal management and insulation system were especially designed for self-sustainable operation. A cold BOP part was composed of blowers, pumps, a water trap and system control units. When a 1kW class SOFC system was operated at $750^{\circ}C$ with hydrogen, the stack power was 1.2kW at 30 A and 1.6kW at 50A. Turning off an electric furnace, the SOFC system was operated using hydrogen and city gas without any external heat source. Under self-sustainable operation conditions, the stack power was about 1.3kW with hydrogen and 1.2kW with city gas respectively. The system also recuperated heat of about 1.1kW by making hot water. Recently KEPRI developed stacks using $15{\times}15cm^2$ cells and tested them. KEPRI will develop a 5 kW class CHP system using $15{\times}15cm^2$ stacks by 2010.

  • PDF

Performance Research of a Jacket Cooling Water System in a Diesel Electric Generation (디젤발전 자켓냉각시스템 열성능 향상 연구)

  • Lee, Jae-Keun;Moon, Jeon-Soo;Yoon, Seok-Won;Park, Pill-Yang
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.6
    • /
    • pp.534-539
    • /
    • 2009
  • One of the most efficient techniques improving the heat transfer performance of a diesel electric generation is a corrosion control in jacket cooling water system. The environmental parameters most affecting corrosion are dissolved salt concentration, temperature, and pH of cooling water. No corrosion occurs in carbon steel probe at pH 11 in normal operating condition of diesel electric generation cooling water. pH control agent in this study is trisodium phosphate. pH control appears to be the most convenient way to enhance the thermal performance of a diesel electric generation.

The policy study on the power grid operation strategy of new and renewable energy combined generation system (도서지역의 신재생에너지복합발전 전력계통 운영방안에 관한 정책연구)

  • Kim, Eui Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.109.1-109.1
    • /
    • 2011
  • KEPCO was operating power plants with diesel generators in 49 islands including Baekryeong-Do, and the generation capacity was about 66 MW in 2008. The cost of fuel is increasing by the international oil price inflation and continuous rise of oil price is predicted. For the stabilizing of electric power supply to the separate islands, renewable energy and fuel cell systems were considered. Hydrogen is made using renewable energy such as wind power and solar energy, and then a fuel cell system generates electricity with the stored hydrogen. Though the system efficiency is low, it is treated as the only way to secure the stable electric supply using renewable energy at this present. The analytic hierarchy process was used to select suitable candidate island for the system installation and 5 islands including Ulleung-Do were selected. Economic evaluation for the system composed of a kerosene generator, a wind power, an electrolysis, and a fuel cell system was conducted with levelized generation cost based on present value methode. As the result, the necessity of renewable energy combined generation system and micro grid composition in the candidated islands was confirmed. Henceforth, the development of an integration technology which connects micro grid to the total power grid will be needed.

  • PDF

Effect of Additives for Prevention of NaBO2 Precipitation on Hydrogen Generation Properties of NaBH4 Hydrolysis (NaBO2의 석출 방지를 위한 첨가제가 NaBH4 가수분해의 수소발생특성에 미치는 영향)

  • Oh, Taekyun;Kwon, Sejin
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • Additives such as glycerol, methanol, acetone, and ethanol were used to prevent $NaBO_2$ from precipitation, and their effects on hydrogen generation properties of $NaBH_4$ hydrolysis were investigated. When the concentration of additives was 5 wt%, the additives such as methanol, acetone, and ethanol could not prevent $NaBO_2$ precipitation. Although glycerol prevented $NaBO_2$ precipitation, conversion efficiency decreased to 78.0% due to its viscosity. Based on test results, hydrogen generation tests were also performed at various concentration of glycerol and methanol to investigate the concentration effects on hydrogen generation properties. As the concentration of glycerol increased from 1 wt% to 3 wt%, conversion efficiency increased owing to additive effect. When its concentration increased to 5 wt%, conversion efficiency decreased due to its viscosity. As the concentration of methanol increased from 5 wt% to 10 wt%, conversion efficiency increased owing to additive effect. When its concentration increased to 15 wt%, conversion efficiency decreased due to $NaB(OCH_3)_4$ precipitate. Although conversion efficiency decreased about 1% when 3 wt% glycerol was added, $NaBO_2$ precipitation was prevented. Consequently, addition of 3 wt% glycerol to $NaBH_4$ solution improves stability of hydrogen generation system.

Computer Modeling of the Power Generation System Using Polymer Electrolyte Fuel Cell (고분자 전해질형 연료전지 발전 시스템의 전산모사)

  • Baek, Young-Soon
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.5
    • /
    • pp.460-466
    • /
    • 2008
  • In this study, a computer modeling work has been performed for the power generation system using polymer electrolyte fuel cell with Aspen Plus general purpose chemical process simulator. Stoichiometric reactor module was used for the modeling of reformer for the production of hydrogen. For the modeling of the electrochemical reaction, Gibbs reactor module built-in Aspen Plus was utilized. SRK equation of state model was selected for the proper simulation of the overall fuel cell system.