• Title/Summary/Keyword: Hydrogen Gas Tank

Search Result 89, Processing Time 0.019 seconds

Estimation of Hydrogen Filling Time Using a Dynamic Modeling (동적 모델링에 의한 수소 충전 시에 걸리는 시간의 산출)

  • NOH, SANGGYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.3
    • /
    • pp.189-195
    • /
    • 2021
  • A compressed hydrogen tank is to be repressurized to 40 bar by being connected to a high-pressure line containing hydrogen at 50 bar and 25℃. Hydrogen filling time and the corresponding hydrogen temperature has been estimated when the filling process stopped according to several thermodynamic models. During the process of cooling the hydrogen tank, hydrogen temperature and pressure vs. time estimation was performed using Aspen Dynamics. Filling time, hydrogen temperature after filling hydrogen gas, cooling time and the final tank pressure after tank filling process have been completed according to the thermodynamic models are almost same.

Experimental and Numerical Study on the Hydrogen Refueling Process (고압 수소 충전 시스템에 대한 실험 및 수치해석)

  • Lee, Taeck-Hong;Kim, Myoung-Jin;Park, Jong-Kee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.3
    • /
    • pp.342-347
    • /
    • 2007
  • The research on production and application of hydrogen as an alternative energy in the future is being carried out actively. It hydrogen storage is necessary in order that user use hydrogen economically without much difficulty. Among the ways of hydrogen storage the method which is compressed hydrogen gas by high pressure is easier for application than other methods. In this study, we have been calculated gas with changing pressure and temperature variation of container wall through applied to mass and energy balance equation when compressing hydrogen by high pressure, and also to Beattie-Bridgeman equation of state for the kinetic of hydrogen. We will apply above date as a preliminary for design of hydrogen storage tank.

Development of Strength Evaluation Methodology for Independent IMO TYPE C Tank with LH2 Carriers

  • Beom-Il, Kim ;Kyoung-Tae Kim;Shafiqul Islam
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.87-102
    • /
    • 2024
  • Given the inadequate regulatory framework for liquefied hydrogen gas storage tanks on ships and the limitations of the IGC Code, designed for liquefied natural gas, this study introduces a critical assessment procedure to ensure the safety and suitability of such tank designs. This study performed a heat transfer analysis for boil-off gas (BOG) calculations and established separate design load cases to evaluate the yielding and buckling strength. In addition, the study assessed methodologies for both high-cycle and low-cycle fatigue assessments, complemented by comprehensive structural integrity evaluations using finite element analysis. A comprehensive approach was developed to assess the structural integrity of Type C tanks by conducting crack propagation analysis and comparing these results with the IGC Code criteria. The practicality and efficacy of these methods were validated through their application on a 23K-class liquefied hydrogen carrier at the concept design stage. These findings may have important implications for enhancing safety standards and regulatory policies.

Prediction of Changes in Filling Time and Temperature of Hydrogen Tank According to SOC of Hydrogen (수소 잔존 용량에 따른 수소 탱크 충전 시간 및 온도 변화 예측)

  • LEE, HYUNWOO;OH, DONGHYUN;SEO, YOUNGJIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.4
    • /
    • pp.345-350
    • /
    • 2020
  • Hydrogen is an green energy without pollution. Recently, fuel cell electric vehicle has been commercialized, and many studies have been conducted on hydrogen tanks for vehicles. The hydrogen tank for vehicles can be charged up to 70 MPa pressure. In this study, the change in filling time, pressure, and temperature for each hydrogen level in a 59 L hydrogen tank was predicted by numerical analysis. The injected hydrogen has the properties of real gas, the temperature is -40℃, and the mass flow rate is injected into the tank at 35 g/s. The initial tank internal temperature is 25℃. Realizable k-epsilon turbulence model was used for numerical analysis. As a result of numerical analysis, it was predicted that the temperature, charging time, and the mass of injected hydrogen increased as the residual capacity of hydrogen is smaller.

Study on Cool-down Analysis Technology for Large Scale Liquid Hydrogen Receiving Terminal (대용량 액체수소 인수기지 쿨다운 해석 기술 연구)

  • CHANG-WON PARK;DONG-HYUK KIM;YEONG-BEOM LEE;HEUNG-SEOK SEO;YOUNG-SOO KWON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.34-39
    • /
    • 2024
  • Korea government is trying to supply liquid hydrogen from another country to domestic The research for liquid hydrogen transportation and liquefaction plant of hydrogen underway for several years, and empirical research is also planned in the future. Along with the development of liquid hydrogen transport ship/liquefaction plant technology, the development of liquid hydrogen reception base technology must be carried out. In this study, a concept level liquid hydrogen receiving terminal is constructed based on the process of the LNG receiving terminal. Based on this, a study is conducted on the development of analysis technology for the amount of BOG (pipe, tank) generated during cooldown and unloading in the liquid hydrogen unloading line (loading arm to storage tank). The research results are intended to be used as basic data for the design and liquid hydrogen receiving terminal in the future.

Study of the Characteristics of Hydrogen-Gas Filling Process of Ultra-Light Composite Tanks for Fuel-Cell Vehicles (연료전지자동차용 초경량 복합재료 탱크의 수소 충전 특성 연구)

  • Yoo, Gye-Hyoung;Kim, Jong-Lyul;Lee, Taek-Su;Lee, Joong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.813-819
    • /
    • 2011
  • In this research, we investigated the hydrogen-gas filling characteristics of ultra-light composite tanks that have a plastic or aluminum liner inside the composite shell. The study was performed for different gas and tank temperatures. The temperature changes at various positions in the Type-4 tank during hydrogen-gas filling were monitored in order to understand the effects of the filling conditions. The results were compared with those obtained for a Type-3 tank. As the filling speed was increased, a quicker temperature rise was observed, and the temperature distribution over the entire region showed significant discrepancies.

The Evaluation of Fire Reliability for the High Pressure Hydrogen Storage System of Fuel Cell Vehicle (I) (연료전지자동차의 고압수소저장시스템 국부화재 신뢰성 평가 (I))

  • Kim, Sang-Hyun;Choi, Young-Min;Hang, Ki-Ho;Shim, Ji-Hyun;Hang, In-Cheol;Lim, Tae-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.520-526
    • /
    • 2011
  • In recent years, it is very important that hydrogen storage system is safe for user in any circumstances in case of crash and fire. Because the hydrogen vehicle usually carry high pressurized cylinders, it is necessary to do safety design for fire. The Global Technical Regulation (GTR) has been enacted for localized and engulfing fire test. High pressure hydrogen storage system of fuel cell electrical vehicles are equipped with Thermal Pressure Relief Device (TPRD) installed in pressured tank cylinder to prevent the explosion of the tank during a fire. TPRDs are safety devices that perceive a fire and release gas in the pressure tank cylinder before it is exploded. In this paper, we observed the localized and engulfing behavior of tank safety, regarding the difference of size and types of the tanks in accordance with GTR.

Numerical Analysis of Fillling Flow in Type III Hydrogen Tank with Different Turbulence Models (Type III 수소 저장 용기에서 난류 모델(Turbulence Model)에 따른 충전(Filling)현상의 수치 해석적 연구)

  • KIM, MOO-SUN;RYU, JOON-HYOUNG;LEE, SUNG-KWON;CHOI, SUNG-WOONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.483-488
    • /
    • 2021
  • With continuous emission of environmental pollutants and an increase in greenhouse gases such as carbon dioxide, demand to seek other types of energy sources, alternative energy, was needed. Hydrogen, an eco-friendly energy, is attracting attention as the ultimate alternative energy medium. Hydrogen storage technology has been studied diversely to utilize hydrogen energy. In this study, the gas behavior of hydrogen in the storage tank was numerically examined under charge conditions for the Tpe III hydrogen tank. Numerical results were compared with the experimental results to verify the numerical implementation. In the results of pressure and temperature values under charge condition, the Realizable k-ε model and Reynold stress model were quantitatively matched with the smallest error between numerical and experimental results.

A Study on the Thermal Characteristics of High Pressure Hydrogen Storage Tank according to Nozzle Angle and Length/Diameter Ratio (고압수소 저장용기의 노즐 각도 및 길이/직경비에 따른 열적 특성 연구)

  • JEONG HWAN YOON;JUNYEONG KWON;KYUNG SOOK JEON;JIN SIK OH;SEUNG JUN OH
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.431-438
    • /
    • 2023
  • Recently, study on hydrogen is being conducted due to environmental pollution and fossil fuel depletion. High-pressure gas hydrogen commonly used is applied to vehicle and tube trailers. In particular, high-pressure hydrogen storage tank for vehicles must comply with the guidelines stipulated in SAE J2601. There is a charging temperature limitation condition for the safety of the storage tank material. In this study, numerical analysis method were verified based on previous studies and the nozzle angle was changed for thermal management to analyze the increase in forced convection effect and energy uniformity due to the promotion of circulation flow. The previously applied high-pressure hydrogen storage tank has a length/diameter ratio of about 2.4 and was analyzed by comparing the length/diameter ratio with 8. As a result, the circulation flow of hydrogen flowing into the high-pressure hydrogen storage tank is promoted at a nozzle angle of 30° than the straight nozzle and accordingly, the effect of suppressing temperature rise by energy uniformity and forced convection was confirmed.

On the Optimized Design of a Composite Hydrogen Fuel Tank using Taguchi Method (다구찌법을 이용한 복합소재 수소연료탱크의 최적설계에 관한 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.6
    • /
    • pp.57-62
    • /
    • 2011
  • In this study, the optimized design for 130 liter storage fuel tank with 70MPa filling pressure has been investigated using a FEM technique and Taguchi design method. The strength safety of a composite fuel tank in which is fabricated by an aluminum liner of 6061-T6 material and carbon fiber wound composite layers of T800-24K has been analyzed based on the criterion of design safety of US DOT-CFFC and Korean Standard. The FEM computed results on the stress safety of 70MPa hydrogen gas tank were compared with a criterion of a stress ratio, 2.4 of US DOT-CFFC and Korean Standard, and indicated the safety. Thus, the optimized design elements based on the Taguchi's method were recommended as an aluminum liner thickness of 6.4mm, a carbon fiber laminate thickness in hoop direction of 31mm and a carbon fiber laminate thickness in helical direction of 10.2mm, which is represented by a design model of No. 5.