• 제목/요약/키워드: Hydrogen Compressor

검색결과 89건 처리시간 0.019초

Evaluation of Scratch Characteristics of Diaphragm for Application of Hydrogen Compressor Parts

  • Sung-Jun Lee;Chang-Lae Kim
    • Tribology and Lubricants
    • /
    • 제39권5호
    • /
    • pp.212-215
    • /
    • 2023
  • Diaphragm compressors play a crucial role in safely compressing large volumes of high-purity hydrogen gas without contamination or leakage, thereby ensuring quality and reliability. Diaphragm compressors use a thin, flat, triple-layered diaphragm plate that is subjected to repetitive piston pressure for compression. They are usually made of metallic materials such as stainless steel or Inconel owing to their high-pressure resistance. However, since they are consumable components, they fail due to fatigue from repetitive pressure and vibration stress. This study aims to evaluate the scratch characteristics of diaphragms in operational environments by conducting tests on three different samples: Inconel 718, AISI 301, and Teflon-coated AISI 301. The Inconel 718 sample underwent a polishing process, the AISI 301 sample used raw material, and the Teflon coating was applied to the AISI 301 substrate at a thickness of 50 ㎛. To assess the scratch resistance, reciprocating motion friction tests were performed using a tribometer, utilizing 220 and 2000 grit sandpapers as the counter materials. The results of the friction tests suggested that the Teflon-coated sample exhibited the lowest initial friction coefficient and consistently maintained the lowest average friction coefficient (0.13 and 0.11 with 220 and 2000 grit, respectively) throughout the test. Moreover, the Teflon-coated diaphragm showed minimal wear patterns, indicating superior scratch resistance than the Inconel 718 and AISI 301 samples. These findings suggest that Teflon coatings may offer an effective solution for enhancing scratch resistance in diaphragms, thereby improving compressor performance in high-pressure hydrogen applications.

수소압축기용 벨로우즈 다이아프램의 우레탄 금형 전단공정 연구 (A Study on Urethane Pad Blanking Process of Bellows Diaphragm for Hydrogen Compressor)

  • 김용관;박훈재;김강은;홍명표;강경필;이경훈
    • 소성∙가공
    • /
    • 제33권1호
    • /
    • pp.5-11
    • /
    • 2024
  • The development of a next-generation hydrogen compressor, a key component in the expansion of hydrogen charging infrastructure, is in progress. In order to improve compression efficiency and durability, it is important to optimize the precision forming and shearing processes of the diaphragm, which is the bellows unit cell, as well as the optimization of diaphragm shape itself. In this study, we aim to show that die and process design technology that can synchronize the inner and outer shearing points of the diaphragm for the precision forming of product can be constructed based on a numerical simulation. First, the damage model that can predict the fracture points will be determined using the shear load and shear zone measurements obtained by performing a blanking test of AISI-633 stainless steel. Next, we will explain the overall procedure based on numerical analysis model how to determine the shearing points according to the deformation pattern of urethane die for various shearing die design.

천연가스 압축기 설계 단계에서 FTA를 이용한 수명 예측 연구 (The Study on the Lifetime Estimation using Fault Tree Analysis in Design Process of LNG Compressor)

  • 한용식;도규형;김태훈;김명배;최병일
    • 한국수소및신에너지학회논문집
    • /
    • 제26권2호
    • /
    • pp.192-198
    • /
    • 2015
  • Fault Tree Analysis to predict the lifetime in the design process of LNG compressor is considered. Fault Trees for P & ID of the compressor are created. Individual components that comprise the compressor are configured with the basic event. The failure rates in the PDS and OREDA are applied. As results, the system failure rate and the reliability over time are obtained. Further, the power transmission and the shaft seal system is confirmed to confidentially importantly contribute to the overall lifetime of the system. These techniques will help to improve the reliability of design of large scale machinery such as a plant.

Compressor-Driven Metal Hydride Heat Pump System의 동작특성에 관한 연구 (The Operating Characteristics of the Compressor-Driven Metal Hydride Heat Pump System)

  • Park, Jeong-Gun;Seo, Chan-Yeol;Lee, Paul S.;Lee, Jai-Young
    • 한국수소및신에너지학회논문집
    • /
    • 제12권3호
    • /
    • pp.157-167
    • /
    • 2001
  • Metal hydride올 이용하는 냉방시스템은 다른 냉방시스템과 비교하여 환경 친화적이며 Clean technology라는 장점이 있다. 이러한 시스템 중에 최근에 많은 연구가 진행중인 Electric Compressor로 수소의 이동이 제어되는 Compressor-Driven Metal Hydride Heat Pump(CDMHHP)은 폐열원의 온도에 의해 제어되는 시스템에 비하여 cooling power가 크다는 장점과 함께 단속적인 냉방이 아닌 2개의 함금쌍으로도 연속적인 냉방이 가능하다는 장점이 있다. 본 연구에서는 이러한 CDMHHP system의 동작특성을 분석하기 위해서 2개의 반응관에 고용량과 solping 특성이 매우 우수한 $Zr_{0.9}Ti_{0.1}Cr_{0.55}Fe_{1.45}$ Laves phase metal hydride을 장입하여 시스템을 구성하고 cycle time, surrounding temperature, 장입 수소량, 수소이동량등의 동작조건을 최적화 한 결과 최대 cooling power가 251 kcal/kg-alloyh의 우수한 성능을 보였다.

  • PDF

차량용 PEMFC 동적 모델을 이용한 시스템 부하 응답 특성 (System Response of Automotive PEMFC with Dynamic Modeling under Load Change)

  • 한재영;김성수;유상석
    • 한국자동차공학회논문집
    • /
    • 제21권1호
    • /
    • pp.43-50
    • /
    • 2013
  • The stringent emission regulation and future shortage of fossil fuel motivate the research of alternative powertrain. In this study, a system of proton exchange membrane fuel cell has been modeled to analyze the performance of the fuel cell system for automotive application. The model is composed of the fuel cell stack, air compressor, humidifier, and intercooler, and hydrogen supply which are implemented by using the Matlab/Simulink(R). Fuel cell stack model is empirical model but the water transport model is included so that the system performance can be predicted over various humidity conditions. On the other hand, the model of air compressor is composed of motor, static air compressor, and some manifolds so that the motor dynamics and manifold dynamics can be investigated. Since the model is concentrated on the strategic operation of compressor to reduce the power consumption, other balance of components (BOP) are modeled to be static components. Since the air compressor model is empirical model which is based on curve fitting of experiments, the stack model is validated with the commercial software and the experiments. The dynamics of air compressor is investigated over unit change of system load. The results shows that the power consumption of air compressor is about 12% to 25% of stack gross power and dynamic response should be reduced to optimize the system operation.

오일부 운전조건 변화에 따른 수소용 다이어프램 압축기의 성능예측에 대한 수치해석 (A Numerical Analysis on a Dependence of Hydrogen Diaphragm Compressor Performance on Hydraulic Oil Conditions)

  • 박현우;신영일;이영준;송주헌;장영준;전충환
    • 한국수소및신에너지학회논문집
    • /
    • 제20권6호
    • /
    • pp.471-478
    • /
    • 2009
  • The specific some types of compressors are appropriate for a use in hydrogen gas station. Metal diaphragm type of hydrogen compressor is one of them, which can satisfy the critical requirements of maintaining gas purity and producing high pressure over 850 bar. The objective of this study is to investigate an characteristics of compression through two-way Fluid-Structure-Interaction (FSI) analysis as bulk modulus and initial volume of oil independently varies. Deflection of diaphragm, oil density, gas and oil pressure were analyzed during a certain period of compression process. According to the analysis results, bulk modulus and initial volume remarkably affected deflection of diaphragm, oil density, gas and oil pressure. The highest gas pressure were attained with the highest bulk modulus of $7e^9\;N/m^2$ and the lowest initial oil volume of 80 cc.

수소액화 예냉용 소형 스털링 극저온 냉동기 특성 연구 (A Study on Stirling Cryocooler for Precooling Hydrogen Liquefier)

  • 박성제;고준석;홍용주;김효봉;염한길;인세환
    • 한국수소및신에너지학회논문집
    • /
    • 제27권6호
    • /
    • pp.651-659
    • /
    • 2016
  • Korea Institute of Machinery & Materials (KIMM) has developed a high efficient Stirling cryocooler with moving magnet linear compressor for precooling hydrogen liquefier and cooling high temperature superconductor (HTS) devices, such as superconductor cable and superconductor fault current limiters. Hydrogen liquefier and HTS electric devices require cryocooler with cooling capacity of hundred watts to kilowatts at 77 K. The compressor in the Stirling cryocooler uses opposed moving magnet linear motors to drive opposed pistons. High efficient Stirling cryocooler is designed by SAGE-software, manufactured and tested systematically. A cooling capacity of 1 kW at 77 K with an electric input power of 9.6 kW has been analyzed. But prototype test results of the Stirling cryocooler have the cooling capacity of 0.65 kW at 76.8 K with an electric input power of 8.1 kW. And then, 21.5% Carnot COP (Coefficient of performance) of the prototype Stirling cryocooler is achieved. The comparison analysis between SAGE-model and experimental results has shown the direction for further design optimization of the Stirling cryocooler.

측정장치 압력손실과 면적평균 물리량 보정을 위한 다단 축류 팬과 압축기의 수치해석적 연구 (Numerical Investigation on Multi-stage Axial Fan and Compressor for Considering Pressure Losses by Instrumentation and Area-averaged Properties)

  • 최재호;김세미;이원석;최태우;김진욱
    • 한국수소및신에너지학회논문집
    • /
    • 제29권4호
    • /
    • pp.401-409
    • /
    • 2018
  • A numerical investigation has been conducted to find the effects of pressure losses by struts and rakes, and averaging methods on the performance of a multi-stage axial fan and a multi-stage axial compressor. Struts and rakes which produce pressure losses are installed upstream of the aerodynamic inlet plane in the fan and the compressor rigs. Some of normal stator vanes are substituted with thick vanes with total pressure probes to measure total pressure between stages. Three-dimensional Reynolds-averaged Navier- Stokes equations with $k-{\omega}$ SST turbulence model were applied to analyze the pressure losses by the struts, inlet rakes, and thick instrumented vanes. The hexahedral grids were used to construct computational domain. Inlet pressure losses were evaluated for the compressor as a function of Mach number. The passage pressure losses due to the instrumented vanes were evaluated at the two speed lines in the fan. Total properties, such as pressure and temperature, were evaluated at the exit of the fan and the compressor with two different averaging methods which are area-averaging and mass-averaging, respectively.

50 MPa급 대용량 수소압축기 사이클 해석 (Hydrogen Compressor Cycle Analysis for the Operating Pressure of 50 MPa and High Charging Capacity)

  • 송병희;명노석;장선준;권정태
    • 한국산학기술학회논문지
    • /
    • 제21권2호
    • /
    • pp.66-73
    • /
    • 2020
  • 현재 개발되고 있는 수소 압축 사이클에서는 압축기를 통해 초고압으로 압축된 수소를 고압용기 내에 저장하여 사용한다. 이러한 충전과정 중 용기내의 수소의 압력 및 온도 상승으로 인하여 고압용기에서 열응력이 발생할 수 있다. 고압용기의 신뢰성을 확보하기 위해서는 용기내의 수소의 온도를 예측하고 제어하는 것이 중요하다. 본 논문에서는 이러한 고압용기의 신뢰성 해석을 위하여 50 MPa급 수소압축시스템에서 고압용기를 충전하는 과정에서의 압력상승에 따른 용기 내의 수소온도 변화 및 외부와의 열평형까지 걸리는 시간, 감압밸브를 지날 때의 수소온도 변화, 고압용기 냉각을 위한 열교환기의 요구능력 등에 대하여 이론적인 방법과 수치적인 방법으로 해석을 수행하였다. 이론해석 결과, 고압용기의 내부 온도는 충전하기 전에 40 ℃에서 충전 후 1st cycle, 2nd cycle에서 평균적으로 126.675 ℃, 62.1 ℃가 증가하였다. 또한, 고압용기의 충전량은 1st cycle, 2nd cycle에서 각각 7.9 kg, 8.9 kg으로 계산되었다. 본 연구의 결과는 수소충전소와 같이 수소압축시스템이 필요한 현장의 인프라 설계 및 구축 등에 유용하게 활용 될 것이다.

Development of an Engineering Model of Hydrogen-Fueled Ultra-micro Combustor for UMGT

  • Shimotori, Shoko;Yuasa, Saburo;Sakurai, Takashi
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.828-836
    • /
    • 2008
  • To develop an engineering-model of hydrogen-fueled ultra-micro combustor for Ultra Micro Gas Turbine(UMGT), we reviewed and summarized the problems in downsizing combustors, and determined a suitable burning method. The key issue to actualize practical ultra-micro combustors is reducing heat loss from the combustor to compressor and turbine. The reduction of heat loss was discussed from 3 different viewpoints; heat-insulation material, high-space-heating-rate combustion, and combustor-insolated gas turbine structure. Use of heat-insulation material induced the heat loss reduction to the surroundings. The heat loss ratio decreased substantially in reverse proportion to space heating rate, leading the idea that it could be reduced by burning at a high space heating rate. By settling the combustor insolated from the compressor and turbine, the heat transfer from the combustor to the compressor and turbine becomes smaller. For a selection of the suitable burning method, comparison between 2 burning methods, flat-flame and swirling-flamer types, was conducted. Synthetically the flat-flame burning method was confirmed to be more suitable for ultra-micro combustors than latter one. Base on them, an engineering-model of hydrogen-fueled flat-flame ultra-micro combustor was developed. To obtain high overall heat-insulation, heat-resistant and strength, the engineering-model combustor had triple layer structure with an advanced ceramic, a heat insulation material and a stainless steel. To simplify heat transfer issue in the combustor, it was isolated from the other components. Furthermore it was designed by considering structure, size, material, velocity, pressure loss and prevention of flashback.

  • PDF