• 제목/요약/키워드: Hydrogen Charging

검색결과 187건 처리시간 0.023초

Interaction of Mechanics and Electrochemistry for Magnesium Alloys

  • Han, En-Hou;Wang, JianQiu;Ke, Wei
    • Corrosion Science and Technology
    • /
    • 제7권5호
    • /
    • pp.243-251
    • /
    • 2008
  • Magnesium alloys become popular research topic in last decade due to its light weight and relatively high strength-to-weight ratio in the energy aspiration age. Almost all structure materials are supposed to suspend stress. Magnesium is quite sensitive to corrosive environment, and also sensitive to environmental assisted cracking. However, so far we have the limited knowledge about the environmental sensitive cracking of magnesium alloys. The corrosion fatigue (CF) test was conducted. Many factors' effects, like grain size, texture, heat treatment, loading frequency, stress ratio, strain rate, chemical composition of environment, pH value, relative humidity were investigated. The results showed that all these factors had obvious influence on the crack initiation and propagation. Especially the dependence of CF life on pH value and frequency is quite different to the other traditional structural metallic materials. In order to interpret the results, the electrochemistry tests by polarization dynamic curve and electrochemical impedance spectroscopy were conducted with and without stress. The corrosion of magnesium alloys was also studied by in-situ observation in environmental scanning electron microscopy (ESEM). The corrosion rate changed with the wetting time during the initial corrosion process. The pre-charging of hydrogen caused crack initiated at $\beta$ phase, and with the increase of wetting time the crack propagated, implying that hydrogen produced by corrosion reaction participated in the process.

지게차용 DMFC와 리튬배터리 하이브리드시스템의 혼합 적용에 대한 연구 (A Study on a Combined DMFC-Lithium Battery Hybrid System for a Forklift)

  • 주용수;임동진;김홍건;곽이구
    • 한국기계가공학회지
    • /
    • 제20권4호
    • /
    • pp.57-65
    • /
    • 2021
  • This paper explains a DMFC-Lithium Battery hybrid system applied to a forklift. A conventional Lead Acid battery forklift has several problems: long charging times, short operation times, and frequent battery replacements. As a result, hydrogen-powered forklifts are replacing Lead acid battery-powered forklifts due to their shorter refueling time and longer operation times. However, in doing so, we are confronted with the problem of a high hydrogen refueling infrastructure. A Direct Methanol Fuel Cell (DMFC), on the other hand, is an eco-friendly generator that directly converts the chemical energy of methanol into electricity. In general, DMFC is regarded as a small power generator under kW power. In this paper, a DMFC-Battery hybrid system is applied to a 1.5 ton forklift by increasing the power output of the DMFC stack and utilizing the high charge-discharge characteristics of a lithium battery.

상업용 리튬 배터리의 수명 예측을 위한 고속대량충방전 데이터 정규화 선형회귀모델의 적용 (Application of Regularized Linear Regression Models Using Public Domain data for Cycle Life Prediction of Commercial Lithium-Ion Batteries)

  • 김장군;이종숙
    • 한국수소및신에너지학회논문집
    • /
    • 제32권6호
    • /
    • pp.592-611
    • /
    • 2021
  • In this study a rarely available high-throughput cycling data set of 124 commercial lithium iron phosphate/graphite cells cycled under fast-charging conditions, with widely varying cycle lives ranging from 150 to 2,300 cycles including in-cycle temperature and per-cycle IR measurements. We worked out own Python codes which reproduced the various data plots and machine learning approaches for cycle life prediction using early cycles and more details not presented in the article and the supplementary information. Particularly, we applied regularized ridge, lasso and elastic net linear regression models using features extracted from capacity fade curves, discharge voltage curves, and other data such as internal resistance and cell can temperature. We found that due to the limitation in the quantity and quality of the data from costly and lengthy battery testing a careful hyperparameter tuning may be required and that model features need to be extracted based on the domain knowledge.

오존, 암모니아 순차적 처리를 통한 바나듐 레독스 흐름 전지용 활성화 카본 펠트 전극 개발 (Development of Activated Graphite Felt Electrode Using Ozone and Ammonia Consecutive Post Treatments for Vanadium Redox Flow Batteries)

  • 최한솔;김한성
    • 한국수소및신에너지학회논문집
    • /
    • 제32권4호
    • /
    • pp.256-262
    • /
    • 2021
  • A carbon felt electrode was prepared using ozone and ammonia sequential treatment and applied as an electrode for a vanadium redox flow battery (VRFB). The physical and electrochemical analyses demonstrate that the oxygen groups facilitate nitrogen doping in the carbon felt. Carbon felt (J5O3+NH3), which was subjected to ammonia heat treatment after ozone treatment, showed higher oxygen and nitrogen contents than carbon felt (J5NH3+O3), which was subjected to ammonia heat treatment first and then ozone treatment. From the charging/discharging of VRFB, the J5O3+NH3 carbon felt electrode showed 14.4 Ah/L discharge capacity at a current density of 150 mA /cm2, which was 15% and 33% higher than that of J5NH3+O3 and non-activated carbon felt (J5), respectively. These results show that ozone and ammonia sequential treatment is an effective carbon felt activation method to increase the performance of the vanadium redox flow battery.

CNG 저장용기 재료의 수소취성에 관한 연구 (A Study of Hydrogen Embrittlement on a Material of CNG Storage Tank)

  • 한정옥;이영철;이중성;채정민;홍성호
    • 한국가스학회지
    • /
    • 제15권2호
    • /
    • pp.9-14
    • /
    • 2011
  • CNG 저장용기 재료인 SA-372 강에 대해 수소취화 영향을 조사하기 위한 시험을 수행하였으며 대기조건과 불활성 가스인 아르곤 그리고 CNG, HCNG 및 수소가스에 대해 35 MPa로 가압된 가스분위기에서 인장시험이 이루어 졌다. 또한 인장시험 속도는 4*10^-4 /s와 4*10^-5/s로 각각 설정하였다. 분위기 가스를 고압으로 유지한 상태에서 시험하기 위해 가압형 오토크레이버가 장착된 인장시험기를 사용하였다. 시험 결과 불활성 가스와 CNG 분위기에서는 대기조건의 인장강도, 연신률 및 단면수축률과 거의 유사한 특성을 보였으며 인장속도의 변화에 대해서도 큰 차이가 없는 것으로 나타났다. 그러나 30% 수소가 혼합된 수소혼합가스와 100% 수소 조건에서 인장강도는 큰 차이를 나타나지 않았지만 연신율과 단면 수축률에서는 눈에 띄는 변화가 있었다. 이로부터 수소가스의 취화효과는 수소가 포함된 조건에서 확인할 수 있었으며 수소농도가 높을수록 연신율과 단면수축률 변화가 크게 나타났다. 또한 인장 속도가 느릴수록 수소취화가 더 많이 나타나는 것으로 확인되었다.

고강도 DP강과 TRIP강의 표면 수소 주입량에 따른 수소취성평가 (The Change of Microstructures According to the Charging Amounts of Hydrogen in High Strength DP Steels and TRIP Steel)

  • 박재우;이철치;강계명
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 춘계학술발표회 논문집
    • /
    • pp.252-253
    • /
    • 2012
  • 음극전기분해법을 이용하여 고강도 DP강과 TRIP강에 수소를 강제 주입시켜, 시험편 내 수소량을 정량적으로 분석하였고, 표면하 미소경도분포 측정과 소형펀치시험 및 파단면 관찰을 통하여 수소주입량에 따른 고강도 박강판재의 수소침투 및 수소취화거동을 평가하고자 하였다. DP강은 강도가 클수록 높은 수소량으로 조사되었고, TRIP강은 DP강에 비해 주입된 수소량이 적은 것으로 조사되었다. 또한 미소경도분포 및 소형펀치시험에서도 DP강은 TRIP강에 비해 수소취성에 민감성이 높은 것으로 평가되었다.

  • PDF

자동차 실내 전자파의 협대역 특성에 관한 연구 (A Study on Narrowband Electromagnetic Interference in The Cabin of Vehicle)

  • 김민우;우현구
    • 자동차안전학회지
    • /
    • 제8권2호
    • /
    • pp.30-36
    • /
    • 2016
  • According to revolutionary developments in automobile technologies, various electronically controlled components of vehicles are rapidly increasing. A variety of advanced vehicles (hybrid vehicle, hydrogen fuel-cell vehicle, electric vehicle, etc.) using electrical energy source are increasing, too. The electromagnetic compatibility is getting more important for development of a vehicle because those advanced vehicles are equipped with more new electronic systems. In general, electromagnetic compatibility tests consist of an electromagnetic interference (EMI) test and an electromagnetic susceptibility (EMS) test. In this paper, in order to investigate the electromagnetic interference in the cabin of vehicle by various electric and electronic components of vehicles, a series of narrowband electromagnetic emission tests are conducted. For comparison, the several digital home appliances (smartphone under charging, laptop compuer and digital camera), which are used a lot in daily lives, are tested.

팔라디움전극에서 중수소의 전기분해와 수소와 격자결함의 반응에 관한 연구 (A Study on Electrolysis of Heavy Water and Interaction of Hydrogen with Lattice Defects in Palladium Electrodes)

  • Ko, Won-Il;Yoon, Young-Ku;Park, Yong-Ki
    • Nuclear Engineering and Technology
    • /
    • 제24권2호
    • /
    • pp.141-153
    • /
    • 1992
  • 상온핵융합의 실험적 검증을 위하여 가공조건 및 기하학적조건이 다른 7종류의 팔라디움전극을 사용하여 24~28시간, 전류밀도 83~600 mA/$\textrm{cm}^2$의 조건하에 전기분해를 실시하였다. 상기조건 하에서 삼중수소의 농축에 기인한 분리팩타(separation factor)를 측정하였고 핵융합의 부산물일수도 있는 삼중수소 증가량을 측정하였다. 또한 초과열 계 산과 관련된 K(net Faradic efficiency)를 측정하여 산소/중수소 가스의 재결합정도를 조사하였다. 양전자소멸측정장치 및 일정체적 가스주입장치를 이용하여 팔라디움전극에서 격자결함과 수소의 반응 및 거동에 대하여 조사하였다. 전기분해하는 동안 삼중수소 농축현상이 관찰되었으나 핵융합의 증거가 될만한 삼중수소양은 검출되지 않았다. 한편 산소/수소 가스의 재결합 정도는 32%로 나타났다. 이는 재결합과정이 발열반응이므로 전기분해과정에서 핵반응과 관계없이 초과엔탈피가 발생할 수 있음을 의미한다. 양전자소멸측정장치를 이용하여 양전자수명, 양전자소멸밀도, P/W 및 R 파라메터의 측정을 통하여 전극의 격자결함(전위 및 공공)에 수소가 집적 (trap)되며 수소집적은 공공에서 보다 전위에 약간 더 선호하는 것으로 나타났다. 전극의 수소화물형성에 수반하여 대부분 전위가 발생한 것으로 나타났다. 또한 팔라디움수소화물의 등시소둔실험을 통하여 소량의 미소공동 형태의 결함이 존재하는 것으로 추정하였고 그 결함의 크기는 수 $\AA$정도인 것으로 생각된다.

  • PDF

Effect of Hydride Reorientation on Delayed Hydride Cracking In Zr-2.5Nb Tubes

  • Yun Yeo Bum;Kim Young Suk;Im Kyung Soo;Cheong Yong Moo;Kim Sung Soo
    • Nuclear Engineering and Technology
    • /
    • 제35권6호
    • /
    • pp.529-536
    • /
    • 2003
  • The objective of this study is to investigate the reorientation of hydrides with applied stress intensity factor, the peak temperature and the time when to apply the stress intensity factor in a Zr-2.5Nb pressure tube during its thermal cycle treatment. Cantilever beam (CB) specimens with a notch of 0.5 mm in depth made from the Zr-2.5Nb tube were subjected to electrolytic hydrogen charging to contain 60 ppm H and then to a thermal cycle involving heating to the peak temperature of either 310 or $380^{\circ}C$, holding there for 50 h and then cooling to the test temperature of $250^{\circ}C$. The stress intensity factor of either 6.13 or $18.4\;MPa\sqrt{m}$ was applied at the beginning of the thermal cycle, at the end of the hold at the peak temperatures and after cooling to the test temperature, respectively. The reorientation of hydrides in the Zr-2.5Nb tube was enhanced with the increased peak temperature and applied stress intensity factor. Furthermore, when the CB specimens were subjected to $18.4\;MPa\sqrt{m}$ from the beginning of the thermal cycle, the reoriented hydrides occurred almost all over the Zr-2.5Nb tube, surprisingly suppressing the growth of a DHC crack. In contrast, when the CB specimens were subjected to the stress intensity factor at the test temperature, little reorientation of hydrides was observed except the notch region, leading the Zr-2.5Nb to grow a large DHC crack. Based on the correlation between the reorientation of hydrides and the DHC crack growth, a governing factor for DHC is discussed along with the feasibility of the Kim's DHC model.

바나듐레독스흐름전지 전해질 유량에 따른 성능변화 (Effect of Electrolyte Flow Rates on the Performance of Vanadium Redox Flow Battery)

  • 이건주;김선회
    • 한국수소및신에너지학회논문집
    • /
    • 제26권4호
    • /
    • pp.324-330
    • /
    • 2015
  • The electrolyte flow rates of vanadium redox flow battery play very important role in terms of ion transfer to electrolyte, kinetics and pump efficiency in system. In this paper a vanadium redox flow battery single cell was tested to suggest the optimization criteria of electrolyte flow rates on the efficiencies. The compared electrolyte circulation flow rates in this experimental work were 15, 30 and 45 mL/min. The charge/discharge characteristics of the flow rate of 30 mL/min was the best out of all flow rates in terms of charging and discharging time. The current efficiencies, voltage efficiencies and energy efficiencies at the flow rate of 30 mL/min were the best. The IR losses obtained at thd current density of $40mA/cm^2$, at the flow rates of 15, 30 and 45 mL/min were 0.085 V, 0.042 V and 0.115 V, respectively. The charge efficiencies at the current density of $40mA/cm^2$ were 96.42%, 96.45% and 96.29% for the electrolyte flow rates of 15, 30 and 45 mL/min, respectively. The voltge efficiencies at the current density of $40mA/cm^2$ were 77.34%, 80.62% and 76.10% for the electrolyte flow rates of 15, 30 and 45 mL/min, respectively. Finally, the energy efficiencies at the current density of $40mA/cm^2$ were 74.57%, 77.76% and 73.27% for the electrolyte flow rates of 15, 30 and 45 mL/min, respectively. The optimum flow rates of electrolytes were 20 mL/min in most of operating variables of vanadium redox flow battery.