• 제목/요약/키워드: Hydrogel

검색결과 594건 처리시간 0.034초

Cefotaxime을 이용한 PVA/PAA 하이드로 겔 필름의 항균 특성 (Antibacterial Characteristics of PVA/PAA Hydrogel Film using Cefotaxime)

  • 염석재;정선도;오은하
    • 한국환경보건학회지
    • /
    • 제47권1호
    • /
    • pp.55-63
    • /
    • 2021
  • Objectives: Cefotaxime is an antibiotic used to treat several bacterial infections. Specifically, it is used to treat pelvic inflammatory disease, meningitis, pneumonia, urinary tract infections, and sepsis. It is given by injection into either a vein or muscle. Antibacterial polymers prepared by chemical bonding and simple blending of antibacterials into polymers has attracted much interest because of their long-lasting antibacterial activity. This study attempted to review the possibility of hydrogel films as functional antibacterial materials by antimicrobial activity. Methods: In this study, CTX-PAA was synthesized by the chemical reaction of polyacrylic acid with cefotaxime by N,N'-Dicyclohexylcarbodiimide (DCC) method. Synthetic antibacterial hydrogel films were then prepared with PVA and CTX-PAA for functional application. Results: The increase in the cefotaxime content of the hydrogel films showed a similar decrease in tensile strength and elongation. The values of films impregnated with chemically bonded cefotaxime showed no significant difference. Antibacterial susceptibility was determined against Streptococcus pneumoniae and Escherichia coli using a standardized disc test. Conclusion: The synthetic antibacterial hydrogel films exhibited broad susceptibility against Streptococcus pneumoniae and Escherichia coli. Notably, the antibacterial effect of antibacterial hydrogel films against Grampositive (Streptococcus pneumoniae) was superior to that against Gram-negative (Escherichia coli).

종이접기 기반 자극 반응성 하이드젤 온도 센서 연구 (Origami inspired Temperature Sensor based on Stimuli-Responsive Hydrogel)

  • 나준희
    • 센서학회지
    • /
    • 제26권1호
    • /
    • pp.35-38
    • /
    • 2017
  • A thermally responsive hydrogel has reversibility with temperature during swelling. Here, we proposed origami inspired temperature sensor by using multi-layered hydrogel film. The formation of patterned stripes on microscale film drives bending to an angle that can be controlled linearly. Although temperature range was not wide, measured sensitivity of sensors has high resolution and accuracy. It providing a powerful platform for the design of sensitive sensors and that easily adapt other type of sensors in microscale.

Effect of bFGF and fibroblasts combined with hyaluronic acid-based hydrogels on soft tissue augmentation: an experimental study in rats

  • Lee, Su Yeon;Park, Yongdoo;Hwang, Soon Jung
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제41권
    • /
    • pp.47.1-47.10
    • /
    • 2019
  • Background: Hyaluronic acid (HA) has been applied as a primary biomaterial for temporary soft tissue augmentation and as a carrier for cells and the delivery of growth factors to promote tissue regeneration. Although HA derivatives are the most versatile soft tissue fillers on the market, they are resorbed early, within 3 to 12 months. To overcome their short duration, they can be combined with cells or growth factors. The purpose of this study was to investigate the stimulating effects of human fibroblasts and basic fibroblast growth factors (bFGF) on collagen synthesis during soft tissue augmentation by HA hydrogels and to compare these with the effects of a commercial HA derivative (Restylane®). Methods: The hydrogel group included four conditions. The first condition consisted of hydrogel (H) alone as a negative control, and the other three conditions were bFGF-containing hydrogel (HB), human fibroblast-containing hydrogel (HF), and human fibroblast/bFGF-containing hydrogel (HBF). In the Restylane® group (HGF), the hydrogel was replaced with Restylane® (R, RB, RF, RBF). The gels were implanted subdermally into the back of each nude mouse at four separate sites. Twelve nude mice were used for the hydrogel (n = 6) and Restylane® groups (n = 6). The specimens were harvested 8 weeks after implantation and assessed histomorphometrically, and collagen synthesis was evaluated by RT-PCR. Results: The hydrogel group showed good biocompatibility with the surrounding tissues and stimulated the formation of a fibrous matrix. HBF and HF showed significantly higher soft tissue synthesis compared to H (p < 0.05), and human collagen type I was well expressed in HB, HF, and HBF; HBF showed the strongest expression. The Restylane® filler was surrounded by a fibrous capsule without any soft tissue infiltration from the neighboring tissue, and collagen synthesis within the Restylane® filler could not be observed, even though no inflammatory reactions were observed. Conclusion: This study revealed that HA-based hydrogel alone or hydrogel combined with fibroblasts and/or bFGF can be effectively used for soft tissue augmentation.

김마선 조사법으로 합성한 PVP하이드로겔의 팽윤과 약물방출특성 (Swelling and Drug Release Characteristics of PVP Hydrogel Polymerized by $\gamma$-Irradiation Method)

  • 심창구;오정숙;신병철
    • 약학회지
    • /
    • 제37권5호
    • /
    • pp.511-519
    • /
    • 1993
  • The short and variabke transit of drug throught GI tracj and the inter-and intra-subject variations of the transit restrict the sustained drug absorption after oral adminstration. These restrictions may be solved by retaining the dosage forms in the stomach. Then the dosage form will act as a platform which releases the drug slowly and makes the GI absorption occur for a long time. In this study, as the platforms, PVP hydrogels were synthesized by chemical and y-irradiation method in the cylindrical test tube. The chemical method means the synthesis of the hydrogel by heating the mixed solution of N-vinyl-2-pyrrolidone [monomer], acrylated albumin [crosslinking agent], 2, 2'-agobis(2-methylpropionitrile) [initiator] and proxyphylline [drug] at $65^{\circ}C$ for 5 hr. The $\gamma$-irradiation method means the synthesis of the hydrogel by irradiation with $^{60}$ Co $\gamma$-ray of the mixed solution of the monomer, acrylated albumin, and flurbiprofen [drug] at room temperature with total 0.2 Mrad for 3 hr. Our intention is to design the hydrogel tablet (diameter : 1.20 cm, thickness : 0.60 cm) which swells in the gastric fluid after oral administration to such a size that passing through the pylorus could be inhibited during the period of drug release. After releasing drug, the hydrogel should be degraded by the enzymeatic digestion in the stomach, or by hydrolysis and eventually solubilized. Thus, in votro tests were performed to examine the factors that affect swelling and drug release from the PVP hydrogels. Experimental results show that the hydrogels swell to a size larger than the diameter of the pylorus(l.3$\pm$0.7 cm) and the hydrogel prepared by the chemical method is digested by pepsin. But the hydrogel prepared by the $\gamma$-irradiation method was not digested by the pepsin and just collapsed with time. Thus, the swelling of the hydrogel synthesized by $\gamma$-irradiation was independent albumin acrylation time and pepsin concentration. But drug content and radiation dose affected the swelling and drug release kinetics of the hydrogel. Drug release from the hydrigels was prolonged up to about 24 hr. Therefore, it was concluded that by adjusting these factors, the albumin-crosslinked PVP hydrogel synthesized by $\gamma$-irradiation method is expected to be retained in the stomach for up to 60hr and be a potential platform of drugs for long-term GI absorption.

  • PDF

Development of a cell-laden thermosensitive chitosan bioink for 3D bioprinting

  • Ku, Jongbeom;Seonwoo, Hoon;Jang, Kyoung-Je;Park, Sangbae;Chung, Jong Hoon
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.107-107
    • /
    • 2017
  • 3D bioprinting is a technology to produce complex tissue constructs through printing living cells with hydrogel in a layer-by-layer process. To produce more stable 3D cell-laden structures, various materials have been developed such as alginate, fibrin and gelatin. However, most of these hydrogels are chemically bound using crosslinkers which can cause some problems in cytotoxicity and cell viability. On the other hand, thermosensitive hydrogels are physically cross-linked by non-covalent interaction without crosslinker, facilitating stable cytotoxicity and cell viability. The examples of currently reported thermosensitive hydrogels are poly(ethylene glycol)/poly(propylene glycol)/poly(ethylene glycol) (PEG-PPG-PEG) and poly(ethylene glycol)/poly(lactic acid-co-glycolic acid) (PEG/PLGA). Chitosan, which have been widely used in tissue engineering due to its biocompatibility and osteoconductivity, can be used as thermosensitive hydrogels. However, despite the many advantages, chitosan hydrogel has not yet been used as a bioink. The purpose of this study was to develop a bioink by chitosan hydrogel for 3D bioprinting and to evaluate the suitability and potential ability of the developed chitosan hydrogel as a bioink. To prepare the chitosan hydrogel solution, ${\beta}-glycerolphosphate$ solution was added to the chitosan solution at the final pH ranged from 6.9 to 7.1. Gelation time decreased exponentially with increasing temperature. Scanning electron microscopy (SEM) image showed that chitosan hydrogel had irregular porous structure. From the water soluble tetrazolium salt (WST) and live and dead assay data, it was proven that there was no significant cytotoxicity and that cells were well dispersed. The chitosan hydrogel was well printed under temperature-controlled condition, and cells were well laden inside gel. The cytotoxicity of laden cells was evaluated by live and dead assay. In conclusion, chitosan bioink can be a candidate for 3D bioprinting.

  • PDF

히드록시프로필셀룰로오스와 카르보폴을 이용한 부유성 히드로겔 매트릭스의 제조 및 in Vitro 평가 (Preparation and in vitro Evaluation of a Buoyant Hydrogel Matrix with Hydroxypropylcellulose and Carbopol)

  • 김상헌;이민성;최영욱
    • Journal of Pharmaceutical Investigation
    • /
    • 제26권2호
    • /
    • pp.137-144
    • /
    • 1996
  • The study was carried out for the preparation and evaluation of a buoyant hydrogel matrix (BHM), which is buoyant in a neutral or in pH 2.0 buffer solution, by the aspects of buoyancy, swelling, and drug release. Physical mixtures of HPC and CP in various molar ratio were employed as a mucoadhesive polymer which swells and controls the rate of drug release. Anhydrous citric acid and sodium bicarbonate in the molar ratio of 1:3 were employed as effervescing agents which provide a buoyancy for the mucoadhesive polymeric matrix. The buoyancy in vitro was expressed as both floating time$(T_{fl})$ and surfing time$(T_{sf})$, which are the time required for floating from the bottom to the surface of the medium and the time to keep the floated state at the surface of medium during release studies, respectively. A close relationship was observed between the buoyancy and the amount of effervescing agent added. $T_{fl}$ of the buoyant hydrogel matrices were decreased to about 10 seconds linearly with increasing the amount of effervescing agent in the range of 5 to 15%. $T_{sf}$ of the buoyant hydrogel matrices were varied from 1 to 3 hr depending on the amount of effervescing agent. The swelling was observed by changes in diameter of the buoyant hydrogel matrices in distilled water or acidic buffer solution, resulted in dependences on pH and the amount of effervescing agents. The release of hydrochlorothiazide from the buoyant hydrogel matrices were followed by apparent zero-order kinetics, while the buoyant hydrogel matrices were floated at the surface and maintaining their swollen shapes.

  • PDF

Poly(L-lysine) Based Semi-interpenetrating Polymer Network as pH-responsive Hydrogel for Controlled Release of a Model Protein Drug Streptokinase

  • Park, Yoon-Jeong;Jin Chang;Chen, Pen-Chung;Victor Chi-Min Yang
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제6권5호
    • /
    • pp.326-331
    • /
    • 2001
  • With the aim of developing of pH-sensitive controlled drug release system, a poly(Llysine) (PLL) based cationic semi-interpenetrating polymer network (semi-IPN) has been synthesized. This cationic hydrogel was designed to swell at lower pH and de-swell at higher pH and therefore be applicable for achieving regulated drug release at a specific pH range. In addition to the pH sensitivity, this hydrogel was anticipated to interact with an ionic drug, providing another means to regulate the release rate of ionic drugs. This semi-IPN hydrogel was prepared using a free-radical polymerization method and by crosslinking of the polyethylene glycol (PEG)-methacrylate polymer through the PLL network. The two polymers were penetrated with each other via interpolymer complexation to yield the semi-IPN structures. The PLL hydrogel thus prepared showed dynamic swelling/de-swelling behavior in response to pH change, and such a behavior was influenced by both the concentrations of PLL and PEG-methacrylate. Drug release from this semi-IPN hydrogel was also investigated using a model protein drug, streptokinase. Streptokinase release was found to be dependent on its ionic interaction with the PLL backbones as well as on the swelling of the semi-IPN hydrogel. These results suggest that a PLL semi-IPN hydrogel could potentially be used as a drug delivery platform to modulate drug release by pH-sensitivity and ionic interaction.

  • PDF

국내 생산 콘택트렌즈의 물리적 특성 비교 -산소전달률을 중심으로- (Comparison of Physical Properties of Domestic Contact Lenses -Focusing on oxygen transmissibility-)

  • 김기성
    • 한국융합학회논문지
    • /
    • 제9권1호
    • /
    • pp.393-403
    • /
    • 2018
  • 산소전달률이 높은 것으로 알려진 실리콘 하이드로젤 콘택트렌즈의 사용이 증가하고 있지만 함수율과 산소전달률 등 물리적 특성이 표시되지 않은채 판매되고 있다.본 연구에서는 국내에서 허가된 실리콘 하이드로젤 콘택트렌즈의 함수율과 산소전달률 등의 물리적 특성을 분석하기 위하여, 식품의약품안전처 웹사이트에 공개된 허가정보를 수집 분석하였다. 본 연구에서 분석된 국산 실리콘 하이드로젤 콘택트렌즈 68건 가운데 61건(89.7%)이 산소투과성에 관한 국제규격을 만족하지 못하였다. 실리콘 하이드로젤 콘택트렌즈에 대한 국내규격이 부재하여 하이드로젤 콘택트렌즈와 차이가 없는 제품도 실리콘 하이드로젤 콘택트렌즈로 신고되었기 때문으로 판단된다. 앞으로 신고된 정보 뿐만 아니라 유통되고 있는 실리콘 하이드로젤 콘택트렌즈의 물리적 특성에 대한 분석이 요구된다.

효소 소화성 하이드로겔 정제의 팽윤 및 프록시필린 방출 특성 (Swelling and Proxyphylline Release Kinetics of Enzyme-Digestible Swelling Hydrogel Tablet)

  • 심창구;이영미;여소현
    • 약학회지
    • /
    • 제36권3호
    • /
    • pp.212-219
    • /
    • 1992
  • Although oral route is the most convenient route for drug administration, the short and variable transit of drug through GI tract restricts the sustained drug absorption after oral administration. Thus, for sustained absorption of drugs, it is desirable to prolong the GI transit time by retaining the dosage forms in the stomach. In this study, the enzyme-digestible swelling hydrogel was synthesized by heating the mixed solution of N-vinyl-2-pyrrolidone[monomer], acrylated albumin[crosslinking agent] and proxyphylline[drug] at $65^{\circ}C$ for 10 hours in the cylindrical test tube. The resultant hydrogel tablet (diameter; 0.77 cm, thickness; 0.47 cm) was designed to swell in the gastric fluid after oral administration to such a size that passing through the pylorus could be inhibited during the drug release. After releasing drug, the hydrogel was expected to be degraded by pepsin, an enzyme in the stomach, and eventually solubilized. Actually, the hydrogel synthesized in the study swelled to a size larger than the diameter of the pylorus ($1.3{\pm}0.7$ cm) and slowly digested in the presence of pepsin. Drug release from the hydrogel was prolonged up to about 12 hours. The swelling kinetics was dependent on albumin acrylation time, drug content and gel thickness. Particularly the gel thickness was the most important factor that influences on drug release. By adjusting these factors, the albumin-crosslinked hydrogel was expected to be retained in the stomach for up to 60 hours and used as a potential platform of drugs for long-term GI absorption.

  • PDF

Effect of Keratin-Based Biocomposite Hydrogels as a RhBMP-2 Carrier in Calvarial Bone Defects Mouse Model

  • Jongjin, Lee;Jinsu, Kang;Jaewon, Seol;Namsoo, Kim;Suyoung, Heo
    • 한국임상수의학회지
    • /
    • 제39권6호
    • /
    • pp.302-310
    • /
    • 2022
  • Recently, in human medicine and veterinary medicine, interest in synthetic bone graft is increasing. Among them, bone morphogenic protein (BMP) is currently being actively researched and applied to clinical trials. However, BMP has the disadvantage of being expensive and easily absorbed into surrounding tissues. Therefore, BMP requires the use of small amounts and rhBMP (recombinant human bone morphogenetic protein)-2 carriers that can be released slowly. Hydrogel has the property of swelling a large amount of water inside when it is aqueous solution, and when it is, it consists of more than 90 percent water. Using these properties, hydrogels are often used as rhBMP-2 carrier. The scaffold used in this study is a hydrogel made from which keratin is extracted using human hair and based on it. In this study, we wanted to see the effect of bone formation in the calvarial defect model by using keratin-based hydrogel made with human hair as a scaffold. The experiment was conducted by dividing 3 groups a total of 12 mice. Calvarial bone defect is set to all 4 mm diameters. Bone formation was evaluated by using gross evaluation, micro-computed tomography (micro-CT), immunohistochemistry. Groups using keratin-based hydrogel were significantly observed compared to Group 1s, and the most bone formations were found when rhBMP-2 and hydrogel were used. This represents the superiority of the functions of the rhBMP-2 carrier by a new material, keratin-based hydrogel. Through gross evaluation, micro-CT, and immunohistochemistry, we can confirm that keratin-based hydrogel is a useful rhBMP-2 carrier.