• 제목/요약/키워드: Hydrodynamic lubrication

검색결과 150건 처리시간 0.026초

미세 딤플 가공 표면의 수력학적 윤활특성에 대한 수치해석 연구 (NUMERICAL STUDY ON HYDRODYNAMIC LUBRICATION CHARACTERISTICS OF MICRO-DIMPLE TEXTURED SURFACES)

  • 홍사훈;이재봉;조민행;이성혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.363-367
    • /
    • 2009
  • Recently, the manufacturing of micro-cavity by means of laser surface texturing (LST) technique and low friction study by the LST have been in great progress. Most of current works have been dealing with the effect of cavity on friction and wear. The main objective of the present study was to investigate numerically two-dimensional lubrication characteristics of micro-dimple shapes fabricated on solid surfaces, and this study utilized the commercial CFD code (Fluent V.6.3). For the evaluation, preliminary simulation was conducted and numerical predictions were compared with the analytic solution obtained from the Reynolds's equation. Mainly, the present study investigated the influence of dimple depth, pattern shapes, and film thickness on lubrication characteristics related to the reduction of friction. It is found that the existence of micro-dimpled surface makes it possible to substantially reduce the friction forces exerted on the surfaces. In particular, substantial decrease in shear stresses was observed as the lubricant film thickness decreases. For instance, in the case of the film thickness of 0.01 mm, the estimated shear stress decreases up to about 40%. It indicates that the film thickness would be important factor in designing the micro-dimpled surfaces. Furthermore, it was observed that such a optimum dimple depth would be present because the dimple depth larger than the optimum value did no longer affect the reduction in shear stresses.

  • PDF

미세 그루브가 있는 무한폭 Slider 베어링의 윤활해석: 제1보 - 그루브 위치의 영향 (Lubrication Analysis of Infinite Width Slider Bearing with a Micro-Groove: Part 1 - Effect of Groove Position)

  • 박태조;장인규
    • Tribology and Lubricants
    • /
    • 제35권6호
    • /
    • pp.376-381
    • /
    • 2019
  • Surface texturing is widely applied to reduce friction and improve the reliability of machine elements. Despite extensive theoretical studies to date, most research has been limited to parallel thrust bearings, mechanical face seals, piston rings, etc. However, most sliding bearings have a convergent film shape in the sliding direction and the hydrodynamic pressure is mainly generated by the wedge action. The results of surface texturing on inclined slider bearings are largely insufficient. This paper is the first part of a recent study focusing on the effect of the groove position on the lubrication performances of inclined slider bearings. We model a slider bearing with one rectangular groove on a fixed pad and analyze the continuity and Navier-Stokes equations using a commercial computational fluid dynamics (CFD) code, FLUENT. The results show that the film convergence ratio and the groove position have a significant influence on the pressure and velocity distributions. There are groove positions to maximize the supporting load with the film convergence ratio and the groove reduces the frictional force acting on the slider. Therefore, the proper groove position not only improves the load-carrying capacity of the slider bearings but also reduces its frictional loss. The present results apply to various surface-textured sliding bearings and can lead to further studies.

파이어링 상태의 일정 축 각속도에서 엔진베어링의 마모 해석 - Part II: 저어널베어링 마모 계산 (Wear Analysis of Engine Bearings at Constant Shaft Angular Speed during Firing State - Part II: Calculation of the Wear on Journal Bearings)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제34권4호
    • /
    • pp.146-159
    • /
    • 2018
  • This paper presents a wear analysis procedure for calculating the wear of journal bearings of a four-strokes and four-cylinder engine operating at a constant angular crank shaft speed during firing conditions. To decide whether the lubrication state of a journal bearing is in the possible region of wear scar, we utilize the concept of the centerline average surface roughness to define the most oil film thickness scarring wear (MOFTSW) on two rough surfaces. The wear volume is calculated from the wear depth and wear angle, determined by the magnitude of each film thickness on a set of oil films with thicknesses lower than the MOFTSW at every crank angle. To calculate the wear volume at one contact, the wear range ratio during one cycle is used. The total wear volume is then determined by accumulating the wear volume at every contact. The fractional film defect coefficient, asperity load sharing factor, and modified specific wear rate for the application of the mixed-elasto-hydrodynamic lubrication regime are used. The results of this study show that wear occurs only at the connecting-rod big-end bearing. Thus, simulation results of only the big-end bearing are illustrated and analyzed. It is shown that the wear volume of each wear scar group occurs consecutively as the crank angle changes, resulting in the total accumulated wear volume.

회전헤드에 대한 주행테이프의 부상특성 (II) -실험해석- (Flying Characteristics of Running Tape above Rotating Head (II) -Experimental Analysis-)

  • 민옥기;김수경
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.107-119
    • /
    • 1991
  • 본 연구에서는 테이프의 미소한 수직 변형에 대한 실험을 수행하여 이에 대한 계측 이론 및 계측방법을 정립한다. 회전 헤드와 주행 테이프를 구동할 수 있는 실 험 장치를 개발하고 주행 테이프의 변형을 정밀 계측할 수 있는 측정 시스템을 구성한 다. 이러한 측정 시스템을 이용하여 고속이면서 미소한 주행 테이프의 변형에 대해 비접촉적인 방법으로 3차원 계측을 실시한다. 헤드의 형상 및 크기가 다른 모델들을 설계 및 가공을 통해 제작하여 주행 테이프의 부상 특성을 평가한다. 주행 테이프의 부상 특성에 관한 수치 해석 결과에 대하여 실제와의 부합 여부를 검토할 수 있도록 실험을 수행한다. 본 연구에서 구성한 비접촉 측정 시스템으로 계측한 테이프의 3차 원 변형에 대한 실험 결과와 수치 해석 결과를 비교 검토한다.

An investigation into the thermo-elasto-hydrodynamic effect of notched mechanical seals

  • Meng, Xiangkai;Qiu, Yujie;Ma, Yi;Peng, Xudong
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2173-2187
    • /
    • 2022
  • A 3D thermo-elasto-hydrodynamic model is developed to analyze the sealing performance of a notched mechanical seal applied in the reactor coolant pump. In the model, the generalized Reynolds equation, the energy equation coupled with notch heat balance equation, the heat conduction equations, and the deformation equations of the sealing rings are iteratively solved by the finite element method. The film pressure and temperature distribution are obtained, and the deformation of the sealing rings is revealed to study the mechanism of the notched mechanical seals. A parameterized study is conducted to analyze the sealing performance under different operating conditions. As a comparison, the sealing performance of non-notched seals is also studied. The results show that the hydrostatic effect is dominant in the load-carrying capacity of the fluid film due to the radial mechanical and thermal deformations. The notch can cool the fluid film and influence the thermal deformation of seal rings. The sealing performance is sensitive to the pressure difference, ambient temperature, and rotational speed. It is suggested to set the notches on the softer sealing rings to acquire the greater hydrodynamic effect. Compared with the non-notched, the notched end face holds a better lubrication performance, especially under lower rotational speed.

사각형 딤플로 Surface Texturing한 경사진 Slider 베어링의 윤활해석 (Lubrication Analysis of Surface-Textured Inclined Slider Bearing with Rectangular Dimples)

  • 박태조;장인규
    • Tribology and Lubricants
    • /
    • 제38권5호
    • /
    • pp.191-198
    • /
    • 2022
  • With the world's fast expanding energy usage comes a slew of new issues. Because one-third of energy is lost in overcoming friction, tremendous effort is being directed into minimizing friction. Surface texturing is the latest surface treatment technology that uses grooves and dimples on the friction surface of the machine to significantly reduce friction and improve wear resistance. Despite the fact that many studies on this issue have been conducted, most of them focused on parallel surfaces, with relatively few cases of converging films, as in most sliding bearings. This study investigated the lubrication performance of surface-textured inclined slider bearings. We analyzed the continuity and Navier-Stokes equations using a commercial computational fluid dynamics code, FLUENT. The results show the pressure and velocity distributions and the lubrication performance according to the number and orientation of rectangular dimples. Partial texturing somewhat improves the lubrication performance of inclined slider bearings. The number of dimples with the maximum load-carrying capacity (LCC) and minimum friction is determined. When the major axis of the dimple is arranged in the sliding direction, the LCC and friction reduction are maximized. However, full texturing significantly reduces the LCC of the slider bearing and increases the flow rate. The results have the potential to improve the lubrication performance of various sliding bearings, but further research is required.

A Study on Hydrodynamic Stiffness Characteristics of Air Bearing for High Speed Spindle

  • Lee, J.Y.;Lee, D.W.;Seong, S.H.;Lee, Y.C.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.115-116
    • /
    • 2002
  • This study was carried out as one of efforts to overcome difficulties in air bearing design due to low stiffness and low damping. Hydrodynamic effects on hydrodynamic stiffness of a fluid film in a high speed air bearing with tow-row air sources are investigated. The hydrodynamic effects by the high speed over DN 1,000,000 and eccentricity of a proceeding which are not considered in conventional design of an air bearing need to be reconsidered. The hydrodynamic effects, which dominantly influence on the load capacity of air bearing, are caused mainly by proceeding speed, eccentricity, and the source positions. The two-row source arrangement in the air bearing produces quite unique hydrodynamic effects with respect to pressure distribution of the air film. Optimal arrangement of the two-row sources improves performance of an air bearing in film reaction force and loading capacity of high speed spindles. This study compares the pressure distribution by numerical simulation as a function of eccentricity of proceeding and the source positions. The air source position 1/7L form one end of an air bearing was found to be superior to source position of 1/4L. The dynamic stiffness were obtained using a two-dimensional cutting method which can directly measure the cutting reaction forces and the displacements of the spindle in two directions using a tool dynamometer and transducer sensors. Heat generation in the air film can not be negligible over the speed of DN 2,000,000. In order to analysis effects of heat generation on the characteristics of air bearing, high cooling bearing spindle and low cooling bearing spindle were tested and compared. Characteristics of the frequency response of shaft and motion of run out errors were different for the spindle. The test results show that, in the case of low cooling bearing spindle, the stiffness became smaller due to heat generation. The results, which were obtained for high speed region, may be used as a design information for spindle which can be applied to precision devices such as ultra precision grinding and ultra high speed milling.

  • PDF

Numerical Analysis of the Piston Secondary Dynamics in Reciprocating Compressors

  • Kim, Tae-Jong
    • Journal of Mechanical Science and Technology
    • /
    • 제17권3호
    • /
    • pp.350-356
    • /
    • 2003
  • In this study, a numerical analysis for the piston secondary dynamics of small refrigeration reciprocating compressors is performed. In general, the length of cylinder in this class of compressors is shortened to diminish the frictional losses of the piston-cylinder system. So, the contacting length between piston and cylinder wall is in variable with the rotating crank angle around the BDC of the reciprocating piston. In the problem formulation of the piston dynamics, the variation in bearing length of the piston and all corresponding forces and moments are considered in order to determine the piston trajectory, velocity and acceleration at each step. A Newton-Raphson procedure was employed in solving the secondary dynamic equations of the piston. The developed computer program can be used to calculate the entire piston trajectory and the lubrication characteristics as functions of crank angle under compressor running conditions. The results explored the effects of some design parameters and operating conditions on the stability of the piston, the oil leakage, and friction tosses.

고 연소압을 받는 디젤엔진 피스톤의 핀-보스 베어링 윤활해석 (Pin-Boss Bearing Lubrication Analysis of a Diesel Engine Piston Receiving High Combustion Pressure)

  • 전상명;하대홍
    • Tribology and Lubricants
    • /
    • 제24권3호
    • /
    • pp.133-139
    • /
    • 2008
  • In recently designed diesel engines, the running conditions for piston pin bearings have become very severe due to combustion pressure and temperature increase. In this paper, it will be investigated the tendency of piston pin rotating motion by calculating the friction coefficient at piston pin bearings, the oil film thickness and the frictional torques induced by hydrodynamic shear stress. Finally, the pressure distributions on the oil film of piston pin bearings will be found by two-dimensional lubrication analysis in order to help the optimum design of the bearings of piston pin. Specially, it is investigated the effects on the film pressure distribution due to the change in maximum combustion pressure.

피스톤-링 결합체 마찰력 측정시스템의 개발 (Development of Piston-Ring Assembly Friction Force Measuring System)

  • 윤정의;김승수
    • 한국자동차공학회논문집
    • /
    • 제2권3호
    • /
    • pp.94-104
    • /
    • 1994
  • In order to improve engine performance and its reliability it is very important to find the friction force between piston-ring assembly and cylinder wall in engine operating conditions. A new system was developed for the piston-ring assembly friction force measurement. This system had a relatively high fundamental frequency at 884 Hz and a fine resolution of 0.5N in friction force measurement. Comparing with existing floating liner systems this systems required small installation space and at the same time alleviated the system noise problem induced by the thrust and slap impulse forces.

  • PDF