• 제목/요약/키워드: Hydrodynamic lubrication

검색결과 150건 처리시간 0.023초

피스톤 링의 유체 윤활 해석 (Hydrodynamic Analysis of Piston Rings)

  • 김재현;최상민;김경웅
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제27회 춘계학술대회
    • /
    • pp.167-172
    • /
    • 1998
  • An algorithm of Thermal-elastohydrodynamic lubrication analysis for the piston ring is developed. This algorithm contains cavitation boundary condition so it automatically satisfies conservation of mass. 1-D Reynolds equation and 2-D energy equation are solved simultaneously by using Gauss-Jordan method and Newton-Raphson method. Minimum film thickness and friction force are calculated for 1 cycle. There is little difference between the results caculated by isothermal rigid and EHL analysis in entire cycle. In the results of THL, shear heating effect and temperature boundary condition affect the minimum film thickness and friction force prediction. The minimum film thickness and the friction force calculated by THL are lower than those caculated using isothermal assumption.

  • PDF

자기기록장치에서의 박막탄성체의 탄성유체윤활현상에 관한 수치해석 (Simulation of Elastohydrodynamic Phenomena of Thin Foil in Magnetic Recording Device)

  • 권해성;민옥기;김수경
    • 대한기계학회논문집
    • /
    • 제18권6호
    • /
    • pp.1355-1364
    • /
    • 1994
  • This paper analyzes the running mechanism of flexible and thin foil above rotating protrusion through a numerical simulation. The scope of analysis is confined to the phenomena of elastohy-drodynamic lubrication between the stationary and rotary drums with a running protrusion and thin foil. This mathematical model is based on the modified Reynolds equation and the equation of plate, considering the geometry of protrusion, running direction of protrusion, and the effect of geometric nonlinearity. Finite element method is adopted as a numerical simulation technique to solve the avobe coupled nonlinear equations. In numerical analysis, the effects of the scanning angle in Reynolds equation and the nonlinear term in plate equation are evaluated. Furthermore, the simulation is applied to the situation that thin foil is located in the entire drums (stationary and rotary drums).

운전조건변화에 따른 피스톤-링 결합체 마찰특성 (Friction Characteristics of the Piston-Ring Assembly Varying Engine Operation Coditions)

  • 윤정의;김승수
    • 대한기계학회논문집
    • /
    • 제18권6호
    • /
    • pp.1510-1519
    • /
    • 1994
  • It is important to understand the friction characteristics between piston-ring assembly and cylinder wall for the friction loss reduction as well as the solution of problem such as scuffing wear and oil consumption. A new system was developed for the piston-ring assembly friction force measurement. This system was applied to the friction force measurement to find its functional relationship with variables such as engine speed, oil viscosity, and engine load. The friction mean effective pressure(fmep) was found to have a linear relationship with$(\vpsilon{U})^{0.42}$ under motering and with$(\vpsilon{U})^{0.45}$ under firing operations, where $\vpsilon$ is the kinematic oil viscosity and U is mean piston speed.

연소실 저압변화와 압력-점도지수가 디젤엔진 고압피스톤의 핀-보스 베어링 윤활에 미치는 영향 연구 (A Study on Effects of the Changes in Lower Combustion Pressures and Pressure-Viscosity Index on Pin-Boss Bearing Lubrication of a Diesel Engine Piston Receiving High Combustion Pressure)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제24권2호
    • /
    • pp.55-62
    • /
    • 2008
  • In recently designed diesel engines, the running conditions for piston pin bearings have become very severe due to combustion pressure and temperature increase. In this paper, it will be investigated the tendency of piston pin rotating motion by calculating the friction coefficient at piston pin bearings, the oil film thickness and the frictional torques induced by hydrodynamic shear stress. Finally, the pressure distributions on the oil film of piston pin bearings will be found by two-dimensional lubrication analysis in order to help the optimum design of the bearings of piston pin. Specially, it is investigated how the changes in combustion pressure at exhaust and intake stroke and the pressure-viscosity index effect on the film pressure distribution.

EFFECTS OF SKIRT PROFILES ON THE PISTON SECONDARY MOVEMENTS BY THE LUBRICATION BEHAVIORS

  • Jang, S.;Cho, J.
    • International Journal of Automotive Technology
    • /
    • 제5권1호
    • /
    • pp.23-31
    • /
    • 2004
  • Secondary movements of piston in the bore clearance are closely related to the side impact to the engine block as well as many tribological problems. Some of the major parameters that influence these kinds of movements are piston profile shapes (barrel and flat), piston pin offsets and the magnitudes of bore clearances. In our study, computational investigations are performed about the piston movements in the bore clearance by changing the skirt profiles and piston offsets. In this work, it is found that curved profile and larger offset magnitude to thrust side provide better performance that has low side impact during the engine cycle.

공기윤활 빗살무늬 저널베어링의 부하특성에 대한 유한요소해석 (An Analysis of Load Characteristics of Air-Lubricated Herringbone Groove Journal Bearing By Finite Element Method)

  • 박신욱;임윤철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.353-362
    • /
    • 2000
  • Herringbone groove journal bearing (HGJB) is developed to improve the static and dynamic performances of hydrodynamic journal bearing. In this study, static and dynamic compressible isothermal lubrication problems are analyzed by the finite element method together with the Newton-Raphson iterative procedure. This analysis is introduced for prediction of the static and dynamic characteristics of air lubricated HGJB for various bearing configurations. The bearing load characteristics and dynamic characteristics are dependent on geometric parameters such as asymmetric ratio, groove depth ratio, groove width ratio and groove angle.

  • PDF

Oil Film Thickness Measurement of Engine Bearing and Cam/tappet Contact in an Automotive Engine

  • Choi, Jae-Kwon;Min, Byung-Soon;Han, Dong-Chul
    • Tribology and Lubricants
    • /
    • 제11권5호
    • /
    • pp.71-77
    • /
    • 1995
  • The capacitance technique was used to measure the minimum oil film thickness in engine bearing and the central oil film thickness between cam and tappet. This method is based on the measurement of total capacitance of oil film. For the measurement of the oil film thickness between cam and tappet, two surfaces were assumed to be flat and parallel within the Hertzian region and all the measured capacitance originated from this region. Shear rates from the measured minimum oil film thickness are over 10$^{6}$ sec$^{-1}$ in the greater part in both two cases. The minimum oil film thickness in engine bearing is larger than the surface roughness. Between cam and tappet it is mostly smaller than the surface roughness. In spite of the awkward restriction of the reliability of measured oil film thickness, it was known that the capacitance technique makes it possible to measure the oil film thickness in elastohydrodynamic and mixed lubrication regimes as well as in hydrodynamic regime. Therefore, it is also possible to classify the lubrication regimes based on the oil film thickness.

미세 딤플 가공 표면의 수력학적 윤활특성에 대한 수치해석 (NUMERICAL INVESTIGATION ON HYDRODYNAMIC LUBRICATION CHARACTERISTICS OF MICRO DIMPLE TEXTURED SURFACES)

  • 홍사훈;이재응;조민행;이성혁
    • 한국전산유체공학회지
    • /
    • 제14권4호
    • /
    • pp.56-61
    • /
    • 2009
  • This study deals with the numerical investigation on two-dimensional lubrication characteristics of micro-dimple shapes fabricated on solid surfaces by using the commercial CFD code (Fluent V.6.3) to examine the influence of micro dimple depth and width on the reduction in friction under the sliding plate condition. In addition, single and multiple dimple arrays are simulated, all for a fixed area fraction of dimple on the surface. As a result, it is found that the existence of micro-dimpled surface makes it possible to substantially reduce the friction forces exerted on the surfaces, and such an optimum dimple depth would be present because the dimple depth larger than the optimum value did no longer affect the reduction in shear stresses, indicating that the reduction of friction is likely to be associated with inner flows of lubricant inside dimples. Moreover, it is observed that at the fixed area fraction, the friction reduction increases with the increase of dimple diameter.

Critical Shoulder Height of Raceway in Ball Bearing Considering Elastohydrodynamic Lubrication

  • Kim, Kyeongsoo;Kim, Taewan
    • Tribology and Lubricants
    • /
    • 제38권6호
    • /
    • pp.281-286
    • /
    • 2022
  • In this study, the effects of Elasto-hydrodynamic lubrication pressure on the critical shoulder height of raceway in an angular contact ball bearing were investigated. Both 3D contact analyses using an influence function and the EHL analysis were conducted for the contact geometry between the ball and raceways. The pressure distributions by 3D contact analysis and EHL analysis for an example bearing were compared. The effect of ellipse truncation on the minimum film thickness also investigated from EHL analysis. The critical shoulder height in the dry contact and the EHL state were compared for various applied loads. It is shown that when the ellipse truncation occurs, the pressure spike for the EHL conjunction is higher than that for the dry contact, and its location moves more inward of the contact center. The steep pressure gradients would increase the flow rate, so in order to maintain flow continuity a significant reduction in film thickness and an abrupt rise in pressure occurs in the edge of shoulder. Significant reduction of the minimum film thickness occurs near the edge of shoulder. The critical shoulder heights in the EHL state are calculated as higher values compared with in the dry contact. This results shows that the determination of critical shoulder height by the EHL analysis is more proper.

공기윤활 웨이브 저어널 베어링의 부하 특성에 관한 연구 (A Study on the Load Characteristics of Air-Lublicated Hydrodynamic Wave Journal Bearing)

  • 조성욱;임윤철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제29회 춘계학술대회
    • /
    • pp.156-161
    • /
    • 1999
  • new bearing concept, the wave journal bearing, has been developed to improve the static and dynamic performances of an air-lubricated hydrodynamic journal bearing. This concept features waves on bearing surface. In this study, we present the solution of the compressible Reynolds equation valid for arbitrary Knudsen numbers. Straight wave journal bearing is investigated numerically. The performances of straight wave bearing are compared to the plain journal bearing over relatively wide range of bearing number and eccentricity. The wave journal bearing offers better stability than the plain journal bearing under a13 bearing numbers covered in this study. The bearing load and stability characteristics are dependent on the geometric parameters such as the amplitude and the starting point of the wave relative to the applied load. Under the condition of Knudsen number)0.01, we can not ignore the effect of slip for journal bearing.

  • PDF