• Title/Summary/Keyword: Hydrodynamic interaction

Search Result 308, Processing Time 0.024 seconds

Seismic Analysis of Rack Structure with Fluid-Structure Interaction (유체와 구조물의 연성을 고려한 rack 구조물의 내진해석)

  • Kim, S.J.;Lee, Y.S.;Ryu, C.H.;Yang, K.H.;Jung, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.465-470
    • /
    • 2001
  • In this study, the seismic analysis of rack structure with fluid-structure interaction is performed through use of the Finite Element Method(FEM) code ANSYS. Fluid-structure interaction can specify in terms of an hydrodynamic effect which is defined as the added mass per unit length divided by the area of the cross section. Using the Floor Response Spectrum(FRS) obtained through the time-history analysis, modal analysis and seismic analysis under Operating Basis Earthquake(OBE) and Safe Shutdown Earthquake(SSE) condition is carried out. The fluid-structure interaction effects on the rack structure are investigated.

  • PDF

Dam-reservoir-foundation interaction effects on the modal characteristic of concrete gravity dams

  • Shariatmadar, H.;Mirhaj, A.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.1
    • /
    • pp.65-79
    • /
    • 2011
  • Concrete hydraulic structures such as: Dams, Intake Towers, Piers and dock are usually recognized as" Vital and Special Structures" that must have sufficient safety margin at critical conditions like when earthquake occurred as same as normal servicing time. Hence, to evaluate hydrodynamic pressures generated due to seismic forces and Fluid-Structure Interaction (FSI); introduction to fluid-structure domains and interaction between them are inevitable. For this purpose, first step is exact modeling of water-structure and their interaction conditions. In this paper, the basic equation involved the water-structure-foundation interaction and the effective factors are explained briefly for concrete hydraulic structure types. The finite element modeling of two concrete gravity dams with 5 m, 150 m height, reservoir water and foundation bed rock is idealized and then the effects of fluid domain and bed rock have been investigated on modal characteristic of dams. The analytical results obtained from numerical studies and modal analysis show that the accurate modeling of dam-reservoir-foundation and their interaction considerably affects the modal periods, mode shapes and modal hydrodynamic pressure distribution. The results show that the foundation bed rock modeling increases modal periods about 80%, where reservoir modeling changes modal shapes and increases the period of all modes up to 30%. Reservoir-dam-foundation interaction increases modal period from 30% to 100% for different cases.

Fluid-structure interaction system predicting both internal pore pressure and outside hydrodynamic pressure

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.7 no.6
    • /
    • pp.649-668
    • /
    • 2018
  • In this paper, we present a numerical model for fluid-structure interaction between structure built of porous media and acoustic fluid, which provides both pore pressure inside porous media and hydrodynamic pressures and hydrodynamic forces exerted on the upstream face of the structure in an unified manner and simplifies fluid-structure interaction problems. The first original feature of the proposed model concerns the structure built of saturated porous medium whose response is obtained with coupled discrete beam lattice model, which is based on Voronoi cell representation with cohesive links as linear elastic Timoshenko beam finite elements. The motion of the pore fluid is governed by Darcy's law, and the coupling between the solid phase and the pore fluid is introduced in the model through Biot's porous media theory. The pore pressure field is discretized with CST (Constant Strain Triangle) finite elements, which coincide with Delaunay triangles. By exploiting Hammer quadrature rule for numerical integration on CST elements, and duality property between Voronoi diagram and Delaunay triangulation, the numerical implementation of the coupling results with an additional pore pressure degree of freedom placed at each node of a Timoshenko beam finite element. The second original point of the model concerns the motion of the outside fluid which is modeled with mixed displacement/pressure based formulation. The chosen finite element representations of the structure response and the outside fluid motion ensures for the structure and fluid finite elements to be connected directly at the common nodes at the fluid-structure interface, because they share both the displacement and the pressure degrees of freedom. Numerical simulations presented in this paper show an excellent agreement between the numerically obtained results and the analytical solutions.

An Basic Estimation for the Mutual action of Seismic load-Pore Pressure about Fill dam (필 댐에 관한 지진하중-간극수압의 상호작용 평가를 위한 기초연구)

  • Jeung, Eu-Jung;Baek, Sung-Chu;Nam, Yel-Woo;Lee, Seom-Beom;Park, Inn-Joon;Kim, Hong-Taek
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.275-278
    • /
    • 2007
  • In case of having no consideration for pore pressure, we may underestimate earthquakes in seismic analysis of fill dam. because we can not consider hydrodynamic pressures induced by earthquakes. Nevertheless, there are few actual results on hydrodynamic pressures variation due to the principal variables of seismic analysis of fill dam. So, in this study we study earthquake-pore pressure interaction performing divers variable analysis, as considering Sesimic load-Pore Pressure.

  • PDF

Control of Dynamic Reaponses of Huge Structures for Ocean Space Utilization in Waves (해양공간이용구조물의 응답제어)

  • Goo, Ja-Sam;Hong, Bong-Ki
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.16-30
    • /
    • 1991
  • A numerical procedure is described for predicting the dynamic responses of combined systems of floating breakwaters and huge offshore structures supported by a large numer of the floating bodies in waves. The hydrodynamic interactins among tatal floating bodies are taken into account in their exact form within the context of linear potential theory. Wave control effects are discussed with both hydrodynamic interactions and hydrodynamic-structure interaction effects. The method presented is applicalbe to combined systems of floating breakwaters and huge structures for ocean space utilization for which a number of practical uses are seen in the future.

  • PDF

Control of Dynamic Reaponses of Huge Structures for Ocean Space Utilization in Waves (해양공간이용구조물의 응답제어)

  • Goo, Ja-Sam;Hong, Bong-Ki
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.156-156
    • /
    • 1991
  • A numerical procedure is described for predicting the dynamic responses of combined systems of floating breakwaters and huge offshore structures supported by a large numer of the floating bodies in waves. The hydrodynamic interactins among tatal floating bodies are taken into account in their exact form within the context of linear potential theory. Wave control effects are discussed with both hydrodynamic interactions and hydrodynamic-structure interaction effects. The method presented is applicalbe to combined systems of floating breakwaters and huge structures for ocean space utilization for which a number of practical uses are seen in the future.

Hydrodynamic analysis of a floating body with an open chamber using a 2D fully nonlinear numerical wave tank

  • Uzair, Ahmed Syed;Koo, Weon-Cheol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.281-290
    • /
    • 2012
  • Hydrodynamic analysis of a surface-piercing body with an open chamber was performed with incident regular waves and forced-heaving body motions. The floating body was simulated in the time domain using a 2D fully nonlinear numerical wave tank (NWT) technique based on potential theory. This paper focuses on the hydrodynamic behavior of the free surfaces inside the chamber for various input conditions, including a two-input system: both incident wave profiles and forced body velocities were implemented in order to calculate the maximum surface elevations for the respective inputs and evaluate their interactions. An appropriate equivalent linear or quadratic viscous damping coefficient, which was selected from experimental data, was employed on the free surface boundary inside the chamber to account for the viscous energy loss on the system. Then a comprehensive parametric study was performed to investigate the nonlinear behavior of the wave-body interaction.

Hybrid parallel smooth particle hydrodynamic for probabilistic tsunami risk assessment and inland inundation

  • Sihombing, Fritz;Torbol, Marco
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.185-194
    • /
    • 2019
  • The probabilistic tsunami risk assessment of large coastal areas is challenging because the inland propagation of a tsunami wave requires an accurate numerical model that takes into account the interaction between the ground, the infrastructures, and the wave itself. Classic mesh-based methods face many challenges in the propagation of a tsunami wave inland due to their ever-moving boundary conditions. In alternative, mesh-less based methods can be used, but they require too much computational power in the far-field. This study proposes a hybrid approach. A mesh-based method propagates the tsunami wave from the far-field to the near-field, where the influence of the sea floor is negligible, and a mesh-less based method, smooth particle hydrodynamic, propagates the wave onto the coast and inland, and takes into account the wave structure interaction. Nowadays, this can be done because the advent of general purpose GPUs made mesh-less methods computationally affordable. The method is used to simulate the inland propagation of the 2004 Indian Ocean tsunami off the coast of Indonesia.

Characteristics of Hydrodynamic Interaction on Tug-Barge Using Ship Handling Simulator (선박조종시뮬레이터를 활용한 예부선의 유체력 간섭 특성에 관한 연구)

  • Lee, Sang-Min;Jo, Sang-Hui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.1
    • /
    • pp.57-62
    • /
    • 2009
  • In order to investigate the hydrodynamic interaction between the tug-barge and bank or ship which is crossing to the opposite direction, the towing simulations of tug-barge transportation were performed. Heading of barge, yaw moment and lateral force of tug boat were obtained by this simulation. The characteristics of results were analyzed and the safety towing method for tug-barge operation was proposed. In order to reduce the slewing motion of barge for safe towing operation, the speed of tug boat should be kept slow ahead state with shortened towing line as length of barge within the limits of the possible.

  • PDF

Analysis of Earthquake Responses of a Floating Offshore Structure Subjected to a Vertical Ground Motion (해저지진의 수직지반운동에 의한 부유식 해양구조물의 지진응답 해석기법 개발)

  • Lee, Jin Ho;Kim, Jae Kwan;Jin, Byeong Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.279-289
    • /
    • 2014
  • Considering a rigorously fluid-structure interaction, a method for an earthquake response analysis of a floating offshore structure subjected to vertical ground motion from a seaquake is developed. Mass, damping, stiffness, and hydrostatic stiffness matrices of the floating offshore structure are obtained from a finite-element model. The sea water is assumed to be a compressible, nonviscous, ideal fluid. Hydrodynamic pressure, which is applied to the structure, from the sea water is assessed using its finite elements and transmitting boundary. Considering the fluid-structure interaction, added mass and force from the hydrodynamic pressure is obtained, which will be combined with the numerical model for the structure. Hydrodynamic pressure in a free field subjected to vertical ground motion and due to harmonic vibration of a floating massless rigid circular plate are calculated and compared with analytical solutions for verification. Using the developed method, the earthquake responses of a floating offshore structure subjected to a vertical ground motion from the seaquake is obtained. It is concluded that the earthquake responses of a floating offshore structure to vertical ground motion is severely influenced by the compressibility of sea water.