• Title/Summary/Keyword: Hydrodynamic Motion

검색결과 488건 처리시간 0.022초

구속모형시험을 이용한 잠수함의 동유체력 계수 추정 및 동안정성 평가 (Estimation of Hydrodynamic Derivatives and Dynamic Stability for Submarine Using Captive Model Test)

  • 정재훈;옥지훈;이치승;이제명;이승건
    • 한국항해항만학회지
    • /
    • 제39권3호
    • /
    • pp.173-178
    • /
    • 2015
  • 최근 국내외적으로 수중 유도무기체계 개발로 다양한 형태의 수중운동체 기술이 발전되고 있다. 특히 수중운동체 중 하나인 잠수함은 한국의 특수한 상황에서 최적의 선형설계를 위한 신뢰도 높은 조종성 평가 기술이 요구되며, 이를 위한 정확한 동유체력 계수의 추정 또한 중요한 연구 분야라 할 수 있다. 따라서 본 논문에서는 잠수함 모형을 대상으로 구속모형시험인 VPMM (Vertical Planar Motion Mechanism) 시험을 실시하여 정밀도 높은 동유체력 계수를 추정하였다. 그리고 추정된 연직면 운동에 대한 선형 (Linear) 동유체력 계수 (Hydrodynamic derivatives)들을 이용하여 동안정성 (Dynamic Stability)을 판별하였다. 그 결과, 이론추정치와의 비교를 통해 동유체력 계수의 타당성이 검증되었으며, 잠수함의 연직면 동안정성도 양호한 것으로 평가되었다. 즉, 무한수심으로 정의되는 심도 6.0의 깊은 수심으로 갈수록 주기에 따른 변화가 작아지며, 이론추정치에 근사함을 확인할 수 있었다. 한편 연직면 동안정성 판별에 있어서는, 0보다 큰 양(+)의 값을 가짐으로서 연직면 운동에 대한 동안정성을 만족하는 것으로 나타났다.

Prediction of Motion Responses between Two Offshore Floating Structures in Waves

  • Kim, Mun-Sung;Ha, Mun-Keun
    • Journal of Ship and Ocean Technology
    • /
    • 제6권3호
    • /
    • pp.13-25
    • /
    • 2002
  • In this paper, the motion responses with hydrodynamic interaction effect between two off-shore floating structures in various heading waves are studied by using a linearized three-dimensional potential theory. Numerical calculations using three-dimensional pulsating source distribution techniques have been carried out for twelve coupled linear motion responses and relative motions of the barge and the ship in oblique waves. The computational results give a good correlation with the experimental results and also with other numerical results. As a result, the present computational tool can be used effectively to predict the motion responses of multiple offshore floating structures in waves.

인장 계류식 해양구조물의 동적응답 해석법의 개발 (Development of a Dynamic Response Analysis Method of Tension Leg Platforms in Waves)

  • 구자삼;이창호;홍봉기
    • 한국해양공학회지
    • /
    • 제7권1호
    • /
    • pp.133-146
    • /
    • 1993
  • A numerical procedure is described for predicting the motion and structural responses of tension leg platforms (TLPs) in waves. The developed numerical approach is based on combination of a three dimensional source distribution method and the dynamic response analysis method, in which the superstructure of TLPs is assumed flexible instead of the rigid body assumption used in usual two-step analysis method, proposed by Yoshida et. al. .The hydrodynamic interactions among TLP members, such as columms and pontoons, are included in the motion and structural analyses. Numerical results are compared with the experimental and numerical ones, which are obtained in the literature, of the motion and structural responses of a TLP in waves. The results of comparison confirmed the validity of the proposed approach.

  • PDF

표류(漂流)를 고려한 선체운동(船體運動) (The Effect of The Drift Velocity on The Ship Motion)

  • 황종흘;김용직
    • 대한조선학회지
    • /
    • 제18권3호
    • /
    • pp.29-38
    • /
    • 1981
  • In general the drift result in ship heeling, thus it seems to be necessary to analyze the ship motion by considering both the drifting and heeling phenomena. In this paper, a drift velocity and a heeling angle are given as prior conditions, and then within the linear potential theory the hydrodynamic coefficients and wave exciting forces and moments are derived for a ship advancing and drifting with constant speeds. And numerical calculations are preformed for a cylindrical body of shiplike cross section at zerp forward velocity. The 2-D hydrodynamic forces and moments of a heeled cylinder are calculated by using the Frank Close-Fit method. These numerical results for the oscillating cylinder without drift velocity have shown better agreements with experimental data than the numerical results of Kobayashi[2]. The motion responses for a drifting cylinder are calculated ignoring the drift velocity effect in the free surface condition. The accuracy of these calculations can not be verified, because the experimental data are not available. Through these numerical calculations to so concluded that drift velocity effects on the body motion are signiffcant.

  • PDF

자항상태 VPMM 시험을 통한 무인잠수정 조종성능 추정에 관한 연구 (Study on the Estimation of Autonomous Underwater Vehicle's Maneuverability Using Vertical Planar Motion Mechanism Test in Self-Propelled Condition)

  • 박종열;이신형;이승수;윤현규;서정화;이필엽;김호성;이한솔
    • 대한조선학회논문집
    • /
    • 제57권5호
    • /
    • pp.287-296
    • /
    • 2020
  • The present study aims to improve the accuracy of the maneuvering simulations based on captive model test results. To derive the hydrodynamic coefficients in a self-propelled condition, a mathematical maneuvering model using a whole vehicle model was established. Captive model tests were carried out using the Vertical Planar Motion Mechanism (VPMM) equipment. A motor controller was used to control the constant propeller revolution rate during pure motion tests. The resistance tests, self-propulsion tests, static drift tests, and VPMM tests were performed in the towing tank of Seoul National University. When the vertical drift angle changes, the gravity load on the sensors were changed. The hydrodynamic forces were deduced by subtracting the gravity load from the measured forces. The hydrodynamic coefficients were calculated using the least-square method. The simulation of the turning circle test was compared with the free-running model test result, and the error of the turning radius was 8.3 % compared to the free-running model test.

On the Hydrodynamic Forces Acting on a Partially Submerged Bag

  • Lee, Gyeong-Joong
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • 제2권1호
    • /
    • pp.140-155
    • /
    • 1994
  • The hydrodynamic problem is treated here when a pressurized bag is submerged partially in the water and the end points of it oscillate. SES(Surface Effect Ship) has a bag filled with pressurized air at the stern in order to prevent the air leakage, and the pitch motion of SES is largely affected by the hydrodynamic force of the bag. The shape of a bag can be determined with the pressure difference between inside and outside. Once the hydrodynamic pressure is given, the shape of a bag can be obtained, however in order to calculate the hydrodynamic pressure we should know the shape change of the bag, and vice versa. Therefore the type of boundary condition on the surface of a bag is a moving boundary like a free surface boundary. The present paper describes the formulation of this problem and treats a linearized problem. The computations of the radiation problem for an oscillating bag are shown in comparison with the case that the bag is treated as a rigid body. The hydrodynamic forces are calculated for various values of the pressure inside the bag and the submerged depth.

  • PDF

수학적 해석 방법에 의한 액체저장탱크의 액동압 거동 해석 (Hydrodynamic Behavior Analysis of Vertical-Cylindrical Liquid-Storge Tanks by Mathematically Analytic Method)

  • 박종률;오택열
    • 대한기계학회논문집A
    • /
    • 제26권3호
    • /
    • pp.487-496
    • /
    • 2002
  • Hydrodynamic behavior and response of vertical-cylindrical liquid-storage tank is considered. The equation of the liquid motion is shown by Laplace's differential equation with the fluid velocity potential. The solution of the Laplace's differential equation of the liquid motion is expressed with the modified Bessel functions. Only rigid tank is studied. The equivalent masses and heights for the tank contents are presented for engineering design model.

감쇠판이 부착된 원기둥의 동유체력 특성 (Hydrodynamic Forces Characteristics of a Circular Cylinder with a Damping Plate)

  • 조일형
    • 한국해양공학회지
    • /
    • 제25권1호
    • /
    • pp.1-7
    • /
    • 2011
  • The radiation of water waves by a heaving truncated circular cylinder with damping plate is solved in the frame of the three-dimensional linear potential theory. The damping plate has a distinct advantage in reducing the motion response of a floating circular cylinder by increasing the added mass and the damping coefficient. Using the matched eigenfunction expansion method, the characteristics of hydrodynamic added mass and the damping coefficient are investigated with various system parameters, such as the radius and submergence depth of the damping plate. It is found that both added mass and the damping coefficient are significantly increased due to the arranged features of the larger damping plate with shallow submergence, which are positive factors as a motion reduction device of the floating offshore platform. Also the numerical results for an oscillating submerged disk show that the added mass is negative and that the damping coefficient has a peak value at resonant frequency when submergence depth is sufficiently small.

A Study on the Modeling of Transitional Lateral Force Acting on the Berthing Ship by CFD

  • Kong, Gil-Young;Lee, Yun-Sok;Lee, Sang-Min
    • Journal of Mechanical Science and Technology
    • /
    • 제18권7호
    • /
    • pp.1196-1202
    • /
    • 2004
  • To evaluate the unsteady motion in laterally berthing maneuver, it is necessary to estimate clearly the magnitudes and properties of hydrodynamic forces acting on ship hull in shallow water. A numerical simulation has been performed to investigate quantitatively the hydrodynamic force according to water depth for Wigley model using the CFD (Computational Fluid Dynamics) technique. By comparing the computational results with the experimental ones, the validity of the CFD method was verified. The numerical solutions successfully captured some features of transient flow around the berthing ship. The transitional lateral force in a state ranging from the rest to the uniform motion is modeled by using the concept of circulation.

AW-SNUUV I의 동유체력 계수 추정 (Estimation of Hydrodynamic Coefficients for AUV-SNUUV I)

  • 김기훈;김준영;신민섭;최항순;성우제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.201-204
    • /
    • 2002
  • This paper describes the hydrodynamic characteristics of a test-bed AUV SNUUV-I constructed at Seoul National University. The main purpose of the AUV is to carry out fundamental control and hydrodynamic experiments. Its configuration is basically a long cylinder of 1.35m in length and 0.25m in diameter with delta-type wings near its rear end. On the edge of each wing, a thruster of 1/4HP is mounted, which is used for both drive and turn the vehicle for horizontal movement as the output control power is varied. A pair of control surfaces installed near its font part generates pitch moments for vertical movement. The 6 DOF mathematical model of SNUUV-I contains hydrodynamic forces and moments expressed in terms of a set of hydrodynamic coefficients. These coefficients can be classified into linear damping coefficients, linear inertial coefficients and nonlinear damping coefficients. It is important to estimate the exact value of these coefficients to control the vehicle precisely. Among these, the linear coefficients are known to affect the motion of the vehicle dominantly. The linear damping coefficients are estimated by using Extended Kalman Filter. The responses of the vehicle to input signals are used to estimate the hydrodynamic coefficients, which can be inferred from output signals measured from an IMU (inertial motion unit) sensor, while the linear inertial coefficients are calculated by a potential code. By using these coefficients estimated as described above, a simulation program is constructed using Matlab.

  • PDF