• Title/Summary/Keyword: Hydrodynamic Density

Search Result 137, Processing Time 0.029 seconds

Effect of Schmidt Number on Cohesive and Non-cohesive Sediment Suspension Modeling (점착성, 비점착성 부유사 모형에 대한 Schmidt 수의 영향)

  • Byun, Ji-Sun;Son, Minwoo
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.8
    • /
    • pp.703-715
    • /
    • 2014
  • This study aims to investigating the effect of Schmidt number (${\sigma}_c$) on sediment suspension and hydrodynamics calculation. The range of ${\sigma}_c$ is also studied based on the flux Richardson number ($Ri_f$) and gradient Richardson number ($Ri_g$). Numerical experiments are carried out by 1 dimensional vertical model. Both cohesive and non-cohesive sediments are tested under the conditions of pure current and oscillatory flow. The turbulence damping effect due to sediment suspension is examined considering ${\sigma}_c$ as a constant for the damping effect. The results of this study show the consistent effect of ${\sigma}_c$ on sediment suspension regardless of hydrodynamic condition. It is also found that the model overestimates the flow velocity and turbulent kinetic energy when the damping effect is not considered. Under the conditions of $Ri_f$ and $Ri_g$ causing density stratification, it is known that the vertical mixing of sediment is reasonably calculated in the range of ${\sigma}_c$ from 0.3 to 0.5.

A Modeling Study of Lake Thermal Dynamics and Turbid Current for an Impact Prediction of Dam Reconstruction (댐 재개발이 호수 수온 및 탁수 거동 변화에 미치는 영향 예측을 위한 모델 연구)

  • Jeong, Seon-A;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.813-821
    • /
    • 2005
  • This paper presents a modeling study of thermal dynamics and turbid current in the Obong Lake, Kangreung. The lake formed by the artificial dam in 1983 for agricultural water supply, is currently under consideration of reconstruction in order to expand the volume of reservoir for water supply and flood control in downstream area. The US Army Corps of Engineers' CE-QUAL-W2, a two-dimensional laterally averaged hydrodynamic and water quality model, was applied to the lake after reconstruction as well as the present lake. The model calibration and verification were conducted against surface water levels and temperature of the lake measured during the years of 2001 and 2003. The model results showed a good agreement with fold measurements both in calibration and verification. Utilizing the validated model, an impact of dam reconstruction on vertical temperature and hydrodynamics were predicted. The model results showed that steep temperature gradient between epilimnion and hypolimnion would be formed during summer, along with extension of cold deep water after reconstruction. During winter and spring seasons, however, the vertical temperature profiles was predicted to be quite similar both before and after reconstruction. This results indicated that thermal stratification would become stronger during summer and stay longer after dam reconstruction. From the examination of predicted water movements, it was noticed that the upstream turbid current would infiltrate into the interface between metalimnion and hypolimnion and then suspended solids would slowly settle down to the bottom before reconstruction. After reconstruction, however, it was shown that the upstream turbid current would stay longer in metalimnion with similar density due to strong stratification. The model also predicted that dam reconstruction would make suspended solids near the dam location significantly decrease.

Evaluation of Suspended Solids and Eutrophication in Chungju Lake Using CE-QUAL-W2 (CE-QUAL-W2를 이용한 충주호의 부유물질 및 부영양화 모의평가)

  • Ahn, So Ra;Kim, Sang Ho;Yoon, Sung Wan;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.11
    • /
    • pp.1115-1128
    • /
    • 2013
  • The purpose of this study is to evaluate the suspended solids and eutrophication processes relationships in Chungju lake using CE-QUAL-W2, two-dimensional (2D) longitudinal/vertical hydrodynamic and water quality model. For water quality modeling, the lake segmentation was configured as 7 branches system according to their shape and tributary distribution. The model was calibrated (2010) and validated (2008) using 2 years of field data of water temperature, suspended solids (SS), total nitrogen (TN), total phosphorus (TP) and algae (Chl-a). The water temperature began to increase in depth from April and the stratification occurred at about 10 m early July heavy rain. The high SS concentration of the interflow density currents entering from the watershed was well simulated especially for July 2008 heavy rainfall event. The simulated concentration range of TN and TP was acceptable, but the errors might occur form the poor reflection for sedimentation velocity of nitrogen component and adsorption-sediment of phosphorus in model. The concentration of Chl-a was simulated well with the algal growth patterns in summer of 2010 and 2008, but the error of under estimation may come from the use of width-averaged velocity and concentration, not considering the actual to one side inclination by wind effect.

Abundance of Harmful Algae, Cochlodinium polykrikoides, Gyrodinium impudicum and Gymnodinium catenatum in the Coastal Area of South Sea of Korea and Their Effects of Temperature, Salinity, Irradiance and Nutrient on the Growth in Culture (남해안 연안에서 적조생물, Cochlodinium polykikoides, Gyrodinium impudicum, Gymnodinium catenatum의 출현상황과 온도, 염분, 조도 및 영양염류에 따른 성장특성)

  • LEE Chang Kyu;KIM Hyung Chul;LEE Sam-Geun;JUNG Chang Su;KIM Hak Gyoon;LIM Wol Ae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.5
    • /
    • pp.536-544
    • /
    • 2001
  • Three harmful algal bloom species with similar morphology, Cochlodinium polykrikoides, Gyodinium impudicum and Gymodinium catenatum have damaged to aquatic animals or human health by either making massive blooms or intoxication of shellfishes in a food chain. Eco-physiological and hydrodynamic studies on the harmful algae offer useful informations in the understanding their bloom mechanism by giving promising data for the prediction and modelling of harmful algal blooms event. Thus, we studied the abundance of these species in the coastal area of South Sea of Korea and their effects of temperature, salinity, irradiance and nutrient on the growth for the isolates. The timing for initial appearance of the three species around the coastal area of Namhaedo, Narodo and Wando was between Bate July and late August in 1999 when water temperature ranged from $22.8^{\circ}C\;to\;26.5^{\circ}C$ Vegetative cells of C. polykrikoides and G. impudicum were abundant until late September when water temperature had been dropped to less than $23^{\circ}C$. By contrast, vegetative cell of G. catenatum disappeared before early September, showing shorter period of abundance than the other two species in the South Sea. Both G. impudicum and G. catenatum revealed comparatively low density with a maximal cell density of 3,460 cells/L and 440 cells/L, respectively without making any bloom, while C. polykrikoides made massive blooms with a maximal cell density more than $40\times10^6$cells/L, The three species showed a better growth at the relatively higher water temperature ranging from 22 to $28^{\circ}C$ with their maximal growth rate at $25^{\circ}C$ in culture, which almost corresponded with the water temperature during the outbreak of C. polykrikoides in the coastal area of South Sea. Also, they all showed a relatively higher growth at the salinity from 30 to $35\%$. Specially, G. impudicum showed the euryhalic characteristics among the species, On the other hand, growth rate of G. catenatum decreased sharply with the increase of water temperature at the experimental ranges more than $35\%$. The higher of light intensities showed the better growth rates for the three species, Moreover, C. polykrikoides and G. impudirum continued their exponential growth even at 7,500 lux, the highest level of light intensity in the experiment, Therefore, It is assumed that C. polykrikoides has a physiological capability to adapt and utilize higher irradiance resulting in the higher growth rate without any photo inhibition response at the sea surface where there is usually strong irradiance during its blooming season. Although C. poiykikoides and G. impudicum continued their linear growth with the increase of nitrate ($NO_3^-$) and ammonium ($NH_4^-$) concentrations at less than the $40{\mu}M$, they didn't show any significant differences in growth rates with the increase of nitrate and ammonium concentrations at more than $40{\mu}M$, signifying that the nitrogen critical point for the growth of the two species stands between 13.5 and $40{\mu}M$. Also, even though both of the two species continued their linear growth with the increase of phosphate ($PO_4^{2-}$) concentrations at less than the $4.05{\mu}M$, there were no any significant differences in growth rates with the increase of phosphate concentrations at more than $4.05{\mu}M$, signifying that the phosphate critical point for the growth of the two species stands between 1.35 and $4.05{\mu}M$. On the other hand, C. polykrikoides has made blooms at the oligotrophic environment near Narodo and Namhaedo where the concentration of DIN and DIP are less than 1.2 and $0.3{\mu}M$, respectively. We attributed this phenomenon to its own ecological characteristics of diel vertical migration through which C. polykrikoides could uptake enough nutrients from the deep sea water near bottom during the night time irrespective of the lower nutrient pools in the surface water.

  • PDF

Numerical Simulation of the Formation of Oxygen Deficient Water-masses in Jinhae Bay (진해만의 빈산소 수괴 형성에 관한 수치실험)

  • CHOI Woo-Jeung;PARK Chung-Kill;LEE Suk-Mo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.4
    • /
    • pp.413-433
    • /
    • 1994
  • Jinhae Bay once was a productive area of fisheries. It is, however, now notorious for its red tides; and oxygen deficient water-masses extensively develop at present in summer. Therefore the shellfish production of the bay has been decreasing and mass mortality often occurs. Under these circumstances, the three-dimensional numerical hydrodynamic and the material cycle models, which were developed by the Institute for Resources and Environment of Japan, were applied to analyze the processes affecting the oxygen depletion and also to evaluate the environment capacity for the reception of pollutant loads without dissolved oxygen depletion. In field surveys, oxygen deficient water-masses were formed with concentrations of below 2.0mg/l at the bottom layer in Masan Bay and the western part of Jinhae Bay during the summer. Current directions, computed by the $M_2$ constituent, were mainly toward the western part of Jinhae Bay during flood flows and in opposite directions during ebb flows. Tidal currents velocities during the ebb tide were stronger than that of the flood tide. The comparision between the simulated and observed tidal ellipses showed fairly good agreement. The residual currents, which were obtained by averaging the simulated tidal currents over 1 tidal cycle, showed the presence of counterclockwise eddies in the central part of Jinhae Bay. Density driven currents were generated southward at surface and northward at the bottom in Masan Bay and Jindong Bay, where the fresh water of rivers entered. The material cycle model was calibrated with the data surveyed in the field of the study area from June to July, 1992. The calibrated results are in fairly good agreement with measured values within relative error of $28\%$. The simulated dissolved oxygen distributions of bottom layer were relatively high with the concentration of $6.0{\sim}8.0mg/l$ at the boundaries, but an oxygen deficient water-masses were formed within the concentration of 2.0mg/l at the inner part of Masan Bay and the western part of Jinhae Bay. The results of sensitivity analyses showed that sediment oxygen demand(SOD) was one of the most important influence on the formation of oxygen depletion. Therefore, to control the oxygen deficient water-masses and to conserve the coastal environment, it is an effective method to reduce the SOD by improving the polluted sediment. As the results of simulations, in Masan Bay, oxygen deficient water-masses recovered to 5.0mg/l when the $50\%$ reduction in input COD loads from Masan basin and $70\%$ reduction in SOD was conducted. In the western part of Jinhae Bay, oxygen deficient water-masses recovered to 5.0mg/l when the $95\%$ reduction in SOD and $90\%$ reduction in culturing ground fecal loads was conducted.

  • PDF

Characteristics of Hydrodynamics, Heat and Mass Transfer in Three-Phase Inverse Fluidized Beds (삼상 역 유동층의 수력학, 열전달 및 물질전달 특성)

  • Kang, Yong;Lee, Kyung Il;Shin, Ik Sang;Son, Sung Mo;Kim, Sang Done;Jung, Heon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.451-464
    • /
    • 2008
  • Three-phase inverse fluidized bed has been widely adopted with its increasing demand in the fields of bioreactor, fermentation process, wastewater treatment process, absorption and adsorption processes, where the fluidized or suspended particles are small or lower density comparing with that of continuous liquid phase, since the particles are frequently substrate, contacting medium or catalyst carrier. However, there has been little attention on the three-phase inverse fluidized beds even on the hydrodynamics. Needless to say, the information on the hydrodynamics and transport phenomena such as heat and mass transfer in the inverse fluidized beds has been essential for the operation, design and scale-up of various reactors and processes which are employing the three-phase inverse beds. In the present article, thus, the information on the three-phase inverse fluidized beds has been summarized and reorganized to suggest a pre-requisite knowledge for the field work in a sense of engineering point of view. The article is composed of three parts; hydrodynamics, heat and mass transfer characteristics of three-phase inverse fluidized beds. Effects of operating variables on the phase holdup, bubble properties and particle fluctuating frequency and dispersion were discussed in the section of hydrodynamics; effects of operating variables on the heat transfer coefficient and on the heat transfer model were discussed in the section of heat transfer characteristics ; and in the section of mass transfer characteristics, effects of operating variables on the liquid axial dispersion and volumetric liquid phase mass transfer coefficient were examined. In each section, correlations to predict the hydrodynamic characteristics such as minimum fluidization velocity, phase holdup, bubble properties and particle fluctuating frequency and dispersion and heat and mass transfer coefficients were suggested. And finally suggestions have been made for the future study for the application of three-phase inverse fluidized bed in several available fields to meet the increasing demands of this system.

An Investigation of the Current Squeezing Effect through Measurement and Calculation of the Approach Curve in Scanning Ion Conductivity Microscopy (Scanning Ion Conductivity Microscopy의 Approach Curve에 대한 측정 및 계산을 통한 Current Squeezing 효과의 고찰)

  • Young-Seo Kim;Young-Jun Cho;Han-Kyun Shin;Hyun Park;Jung Han Kim;Hyo-Jong Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.54-62
    • /
    • 2024
  • SICM (Scanning Ion Conductivity Microscopy) is a technique for measuring surface topography in an environment where electrochemical reactions occur, by detecting changes in ion conductivity as a nanopipette tip approaches the sample. This study includes an investigation of the current response curve, known as the approach curve, according to the distance between the tip and the sample. First, a simulation analysis was conducted on the approach curves. Based on the simulation results, then, several measuring experiments were conducted concurrently to analyze the difference between the simulated and measured approach curves. The simulation analysis confirms that the current squeezing effect occurs as the distance between the tip and the sample approaches half the inner radius of the tip. However, through the calculations, the decrease in current density due to the simple reduction in ion channels was found to be much smaller compared to the current squeezing effect measured through actual experiments. This suggests that ion conductivity in nano-scale narrow channels does not simply follow the Nernst-Einstein relationship based on the diffusion coefficients, but also takes into account the fluidic hydrodynamic resistance at the interface created by the tip and the sample. It is expected that SICM can be combined with SECM (Scanning Electrochemical Microscopy) to overcome the limitations of SECM through consecutive measurement of the two techniques, thereby to strengthen the analysis of electrochemical surface reactivity. This could potentially provide groundbreaking help in understanding the local catalytic reactions in electroless plating and the behaviors of organic additives in electroplating for various kinds of patterns used in semiconductor damascene processes and packaging processes.