• 제목/요약/키워드: Hydrodynamic Control

검색결과 250건 처리시간 0.025초

만타형상 무인잠수정의 운동성능 해석 및 제어기 설계를 위한 비선형 수학모델 개발 (Mathematical Modeling for Dynamic Performance Analysis and Controller Design of Manta-type UUV)

  • 변승우;김준영
    • 한국산학기술학회논문지
    • /
    • 제11권1호
    • /
    • pp.21-28
    • /
    • 2010
  • 본 논문에서는 만타형상 무인잠수정(Manta-type unmanned underwater test vehicle)의 운동성능과 제어기설계에 대한 성능을 해석하기 위한 수학모델을 정립하여 시뮬레이션 프로그램을 개발하였다. 6자유도 운동방정식을 이용하여 Matlab/Simulink로 시뮬레이션 프로그램을 구성하였다. 개발된 시뮬레이션 프로그램을 이용하여 만타형상 무인잠수정의 동역학적 운동성능을 해석하였으며, 무인잠수정의 제어성능을 해석하기 위하여 PID(비례-미분-적분)제어기와 슬라이딩모드(Sliding mode)제어기를 설계하여 만타형상 무인잠수정의 제어성능을 해석하였다. 설계된 제어기는 무인잠수정의 수심제어(Depth control)와 방향제어(Heading control)에 사용되었다. 설계된 제어기의 성능을 확인하기 위하여 미해군 대학원의 AUV II와 비교하였다. 설계된 수심제어기와 방향제어기를 이용하여 만타형 무인잠수정의 설계목표에 부합하는 항해제어 시뮬레이션을 실시하였다.

시간지연제어기법을 이용한 수중로봇의 궤적 제어 (Trajectory Control of Underwater Robot using Time Delay Control)

  • 박준영;조병학;이재경
    • 대한기계학회논문집A
    • /
    • 제32권8호
    • /
    • pp.685-692
    • /
    • 2008
  • In this paper, the trajectory control problem of an underwater robot is addressed. From the viewpoint of control engineering, trajectory control of the underwater robot is not an easy task due to its nonlinear dynamics, which includes various hydraulic forces such as buoyancy forces and hydrodynamic damping, the difference between the centers of buoyancy and gravity, and disturbances from a tether cable. To solve such problems, we applied Time Delay Control to the underwater robot. This control law has a very simple structure not requiring the nonlinear plant dynamics, and was proven to be highly robust against disturbances and uncertainties. We confirmed its effectiveness through experiments.

만타형 자율무인잠수정의 운동성능 및 운동제어에 대한 실해역실험 (Field Experiments for Dynamic Characteristics and Motion Control of a Manta-type Autonomous Underwater Vehicle)

  • 김동희;박종현;김준영;최형식;안진형
    • 제어로봇시스템학회논문지
    • /
    • 제19권9호
    • /
    • pp.760-767
    • /
    • 2013
  • In this paper, we developed a Manta-type AUV (Autonomous Underwater Vehicle) and analyzed its control performance as well as its dynamic characteristics underwater. The nonlinear motion of equations, which are expressed in terms of hydrodynamic coefficients obtained by various experiments, are used to simulate the motion of a Manta AUV underwater. We applied the sliding-mode theory to control the heading angle and depth of the vehicle, and confirmed the effectiveness of the control algorithm through simulations and sea-trials.

역세척 Hydrodynamic Separator Filter를 이용한 미세입자 제거 특성 분석 (Performance Evaluation of Backwash Hydrodynamic Separator Filter for Treatment of Micro Particles)

  • 이준호;방기웅
    • 대한환경공학회지
    • /
    • 제34권10호
    • /
    • pp.694-701
    • /
    • 2012
  • 본 연구는 여재를 장착한 수리동역학적 여과분리장치(HSF)와 태양전지 구동형 수중펌프를 조합한 장치의 여재 역세척 가능성에 대하여 분석하였다. 수중펌프는 12볼트 직류모터로 구동되며 태양전지와 축전지로 가동된다. 수리동력학적 분리장치와 펄라이트 여재를 충진한 카트리지에 역세척용 노즐을 장착하였다. 입자물질들은 인공입자들을 이용하여 강우유출수내 입자농도를 모의 실험하였다. 인공입자들을 물에 분산시켜 강우유출수를 재현하였는데 사용한 입자들은 이온교환수지 입자, 실리카젤 입자, 그리고 상업지역 맨홀퇴적물질 입자 등이다. HSF장치는 아크릴 수지를 이용하였는데 여과조의 직경은 250 mm이고 전체적인 높이는 800 mm로 제작하였다. 유입수 SS 농도와 입경, 다양한 수면적 변화를 변화에 대한 역세척 방법별 SS 처리효율을 산정하였다. 전체적인 수면적부하율 범위는 308~$1,250m^3/m^2/day$이다. 태양전지를 이용한 최소한의 전력으로 구동되는 펌프를 이용하여 역세척을 실시한 결과 2대의 수중 펌프를 가동하여 역세척 시 역세척하지 않은 여재와 비교하여 약 18% 처리효율 증가효과를 나타내었다. 비점오염 처리장치에 소규모 태양전지를 활용하여 여재를 역세척할 경우 처리효율을 향상시킬 수 있을 것으로 판단된다.

신경회로망을 이용한 자율무인잠수정의 적응제어 (Adaptive Neural Network Control for an Autonomous Underwater Vehicle)

  • 이계홍;이판묵;이상정
    • 제어로봇시스템학회논문지
    • /
    • 제8권12호
    • /
    • pp.1023-1030
    • /
    • 2002
  • Since the dynamics of autonomous underwater vehicles (AUVs) are highly nonlinear and their hydrodynamic coefficients vary with different vehicle's operating conditions, high performance control systems of AUVs are needed to have the capacities of teaming and adapting to the variations of the vehicle's dynamics. In this paper, a linearly parameterized neural network (LPNN) is used to approximate the uncertainties of the vehicle dynamics, where the basis function vector of the network is constructed according to the vehicle's physical properties. The network's reconstruction errors and the disturbances in the vehicle dynamics are assumed be bounded although the bound may be unknown. To attenuate this unknown bounded uncertainty, a certain estimation scheme for this unknown bound is introduced combined with a sliding mode scheme. The proposed controller is proven to guarantee that all signals in the closed-loop system are uniformly ultimately bounded (UUB). Numerical simulation studies are performed to illustrate the effectiveness of the proposed control scheme.

Robust NN Controller for Autonomous Diving Control of an AUV

  • Li, Ji-Hong;Lee, Pan-Mook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.107-112
    • /
    • 2003
  • In general, the dynamics of autonomous underwater vehicles(AUVs) are highly nonlinear and time-varying, and the hydrodynamic coefficients of vehicles are hard to estimate accurately because of the variations of these coefficients with different navigation conditions. For this reason, in this paper, the control gain function is assumed to be unknown and the exogenous input term is assumed to be unbounded, although it still satisfies certain restrict condition. And these two kinds of wild assumptions have been seldom handled simultaneously in one system because of the difficulty of stability analysis. Under the above two relaxed assumptions, a robust neural network control scheme is presented for autonomous diving control of an AUV, and can guarantee that all the signals in the closed-loop system are UUB (uniformly ultimately bounded). Some practical features of the proposed control law are also discussed.

  • PDF

LMI에 기초한 $H_{\infty}$ 서보제어를 이용한 AUV의 강인한 자동 심도 및 방향제어 (Robust Depth and Course Control of AUV Using LMI-based $H_{\infty}$ Servo Control)

  • 양승윤;김인수;이만형
    • 한국군사과학기술학회지
    • /
    • 제3권1호
    • /
    • pp.38-46
    • /
    • 2000
  • In this paper, robust depth and course controllers of AUV(autonomous underwater vehicles) using LMI-based H$_{\infty}$ servo control are proposed. The $H_{\infty}$ servo problem is modified to an $H_{\infty}$ control problem for the generalized plant that includes a reference input mode, and then a sub-optimal solution that satisfies a given performance criteria is calculated by LMI(Linear Matrix Inequality) approach. The robust depth and course controllers are designed to be satisfied the robust stability about the modeling error generated from the perturbation of the hydrodynamic coefficients and the robust tracking property under sea wave and tide disturbances. The performances of the designed controllers are evaluated by computer simulations, and these simulation results show the applicability of the proposed robust depth and course controller.

  • PDF

Neural-Net Based Nonlinear Adaptive Control for AUV

  • Li, Ji-Hong;Lee, Sang-Jeong;Lee, Pan-Mook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.173.4-173
    • /
    • 2001
  • This paper presents a stable nonlinear adaptive control for AUV(Autonomous Underwater Vehicle) by using neural network. AUV's dynamics are highly nonlinear, and their hydrodynamic coefficients vary with different operational conditions. In this paper, the nonlinear uncertainties of the AUV's dynamics are approximated by using LPNN(Linearly parameterized Neural Network). The presented controller is consist of three parallel terms; linear feedback control, sliding mode control, and adaptive control(LPNN). Lyapunov theory is used to guarantee the stability of tracking errors and neural network´s weights errors. Numerical simulations for nonlinear control of the AUV show the effectiveness of the proposed techniques.

  • PDF

수중 선체에 장착된 로봇팔 궤적의 비귀환형 적응제어 (Non-regressor Based Adaptive Tracking Control of an Underwater Vehicle-mounted Manipulator)

  • 여준구
    • 한국해양공학회지
    • /
    • 제14권2호
    • /
    • pp.7-12
    • /
    • 2000
  • This paper presents a non-regressor based adaptive control scheme for the trajectory tracking of underwater vehicle-mounted manipulator systems(UVMS). The adaptive control system includes a class of unmodeled effects is applied to the trajectory control of an UVMS. The only information required to implement this scheme ios the upper bound and lowe bound of the system parameter matrices the upper bound of unmodeled effects the number of joints the position and attitude of the vehicle and trajectory commands. The adaptive control law estimates control gains defined by the combinations of the bounded constants of system parameter matrices and of a filtered error equation. To evaluate the performance of the non-regressor based adaptive controller computer simulation was performed with a two-link planar robot model mounted on an underwater vehicle. The hydrodynamic effects acting on the manipulator are included. It is assumed that the vehicle's motion is slow and can be predicted with a proper compensator.

  • PDF

별도의 고정타를 갖는 수중운동체 승강타의 제어력에 미치는 받음각의 영향에 대한 실험적 연구 (An Experimental Study on Effect of Angle of Attack on Elevator Control Force for Underwater Vehicle with Separate Fixed Fins)

  • 박정훈;신명섭;최재엽;황종현;신영훈;김연규
    • 한국해양공학회지
    • /
    • 제30권4호
    • /
    • pp.243-252
    • /
    • 2016
  • Conventionally, the static angle of attack and static elevator tests are carried out separately to estimate hydrodynamic stability derivatives of underwater vehicles. However, it is difficult to verify the interaction between the angle of attack and elevator angle in such cases. In this study, we perform a static elevator with angle of attack test where both the angle of attack and elevator angle are varied simultaneously. The experimental results show that the angle of attack has an influence on the elevator control force and that this tendency is dependent on the sense in which the angle of attack and elevator angle are varied. We predict level flight performance using hydrodynamic derivatives estimated through this experiment. The predictions considering the effect of angle of attack show good agreement with trials conducted in the open sea.