• 제목/요약/키워드: Hydrochemical characteristics

검색결과 59건 처리시간 0.026초

부지특성화을 위한 지하수의 수리화학 특성 연구: 주성분 분석을 중심으로 (Hydrochemical Investigation for Site Characterization: Focusing on the Application of Principal Component Analysis)

  • 유순영;김한석;전성천;이종화;윤성택;권만재;조호영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권spc호
    • /
    • pp.34-50
    • /
    • 2022
  • Principal component analysis (PCA) was conducted using hydrochemical data in four testbeds (A to D) built for the development of site characterization technologies to assess the hydrochemical processes controlling the hydrochemistry in each site. The PCA results indicated the nitrogen loading to deep bedrock aquifers through permeable fractures in Testbed A, the chemical weathering enhanced with the biodegradation of petroleum hydrocarbons in Testbed B, the reductive dechlorination in Testbed C, and the different hydrochemistry depending on the depth to bedrock in Testbed D, consistent with the characteristics of each site. In Testbeds B and D, outliers seemed to affect the PCA result probably due to the small number of samples, whereas the PCA result was still consistent with site characteristics. This study result indicates that the PCA is widely applicable to hydrochemical data for the assessment of major hydrochemical processes in contamination sites, which is useful for site characterization when combined with other site characterization technologies, e.g., geological survey, geophysical investigation, borehole logging. It is suggested that PCA is applied in contaminated sites to interpret hydrochemical data not only for the distribution of contamination levels but also for the assessment of major hydrochemical processes and contamination sources.

강우에 의한 중랑천의 수질 특성 변화 연구 (Hydrochemical Characteristics and Changes by Rainfall in the Jungrang River)

  • 김연태;김유리;우남칠;현승규
    • 한국물환경학회지
    • /
    • 제22권4호
    • /
    • pp.666-671
    • /
    • 2006
  • Effects of a rainfall event (July 28, 2005) on the hydrochemical characteristics of the Jungrang river, the biggest tributary of the Han river, was investigated. Significant spatial variations in the hydrochemical characteristics were observed. At JR2 location, concentrations of T-N and T-P were relatively low indicating occurrence of active oxidation in the stepped drop structure. At JR3 location, concentrations of Na, K, Cl, $NH_4-N$ and EC were elevated suggesting increased discharge from the nearby waste-water treatment plant and tributaries. The rain event diluted major dissolved ion concentrations in the river by 12~52%. The $NO_3-N$ levels were preserved during the rain then increased about twofold after rainfall, suggesting increased discharge of nitrate-contaminated groundwater. Heavy metals including Cd, Co, Cr, Cu and Pb were not detected in all water samples and the leachates from surface sediment samples. Concentrations of Fe, Mn, Al and Zn were below the Korean Drinking Water Guideline. Results of this study suggested that establishment of water-quality monitoring protocols describing temporal and spatial variations in parameters sensitive to rainfall events, relatively steady factors, and contaminant sources is required.

Deep Hydrochemical Investigations Using a Borehole Drilled in Granite in Wonju, South Korea

  • Kim, Eungyeong;Cho, Su Bin;Kihm, You Hong;Hyun, Sung Pil
    • 방사성폐기물학회지
    • /
    • 제19권4호
    • /
    • pp.517-532
    • /
    • 2021
  • Safe geological disposal of spent nuclear fuel (SNF) requires knowledge of the deep hydrochemical characteristics of the repository site. Here, we conducted a set of deep hydrochemical investigations using a 750-m borehole drilled in a model granite system in Wonju, South Korea. A closed investigation system consisting of a double-packer, Waterra pump, flow cell, and water-quality measurement unit was used for in situ water quality measurements and subsequent groundwater sampling. We managed the drilling water labeled with a fluorescein dye using a recycling system that reuses the water discharged from the borehole. We selected the test depths based on the dye concentrations, outflow water quality parameters, borehole logging, and visual inspection of the rock cores. The groundwater pumped up to the surface flowed into the flow cell, where the in situ water quality parameters were measured, and it was then collected for further laboratory measurements. Atmospheric contact was minimized during the entire process. Before hydrochemical measurements and sample collection, pumping was performed to purge the remnant drilling water. This study on a model borehole can serve as a reference for the future development of deep hydrochemical investigation procedures and techniques for siting processes of SNF repositories.

Factors controlling groundwater chemistry of the Triassic Sandstone aquifer in North Yorkshire UK

  • Yoshida K.;Bottrell S.H.;West L.J.
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.29-38
    • /
    • 2005
  • It is important to understand groundwater conditions such as recharge, flow and hydrochemical process occurred within an aquifer for groundwater protection and groundwater resource management. Groundwater from the Triassic Sherwood Sandstone aquifer of North Yorkshire has been used for industrial purposes and domestic water supply. Tn order to understand the processes affecting groundwater chemistry and identify the sources of high chloride, sulphate and nitrate concentrations hydrochemical and isotopic measurements were carried out. Hydrochemical and isotopic measurements indicated that five groundwater types exist within the Sherwood Sandstone aquifer of study area. The results of hydrochemical and isotopic measurements showed that older groundwaters have different hydrochemical and isotopic characteristics from recent recharge water. It was also found that water-rock interactions are the dominant mechanism controlling the ${\delta}^{13}C$ composition of dissolved inorganic carbon, the ${\delta}^{34}S\;and\;{\delta}^{18}O$ composition of dissolved sulphate and the strontium isotope ratios ($^{87}Sr/^{86}Sr$) in recent recharge water and old groundwater. Several abstraction boreholes within the Selby wellfield have been contaminated by saline water. The isotopic data of saline groundwater samples taken from these abstraction boreholes indicate that saline waters are derived from the dissolution of the Triassic evaporites within the Mercia Mudstone.

  • PDF

대표적 4개 오염지역의 수리지질 특성과 미생물학적 연구

  • 고경석;김재곤;조경숙;이상돈;염병우
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.164-167
    • /
    • 2004
  • To investigate the chemical and microbiological characteristics of groundwater and surface waters in contaminated sites, hydrochemical and microbial community analysis were executed. Different indigenous bacteria were observed at 4 contaminated sites and this is considered to decompose the contaminants of groundwater. The research results showed the close relationship between hydrochemistry and microbial characteristics and those are used for the information of natural attenuation and enhanced bioremediation.

  • PDF

돼지사체 매몰지역 지하수의 수지구화학 특성: 침출수 누출 판단 (Hydrochemical Characteristics of Groundwater in an Area Affected by Pig Carcass Burial: Leakage Detection)

  • 오준섭;김호림;이정호;김경호;최광준;김현구;윤성택
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제23권1호
    • /
    • pp.30-40
    • /
    • 2018
  • To evaluate potential impacts of shallow groundwater by the leachate from buried carcass, we investigated hydrochemical characteristics of both leachate and shallow groundwater from monitoring wells and surrounding shallow groundwater wells in an area potentially affected by pig carcass burial. The hydrochemical survey was conducted before and after the relocation of a burial pit. The leachate samples and the groundwater affected by leachate showed the hydrochemistry of $Ca-HCO_3$ type with high $NH_4{^+}$ concentrations, while unaffected groundwater was mostly the $Ca(Na)-Cl+NO_3$ type due to pervasive impacts from agrochemicals. The results of factor analysis on hydrochemical data showed the followings: 1) contamination of groundwater from agro-livestock farming and livestock burial are coexisting in the study area, 2) among ionic species, $HCO_3{^-}$, $NH_4{^+}$, $NO_3{^-}$ and Mn are very useful to differentiate the groundwater contamination from leachate, and 3) groundwater contamination by leachate has been recognized around the monitoring wells even after the relocation of a burial pit, likely due to residual contaminants in surrounding soils. Therefore, it is suggested that continued monitoring of groundwater contamination should be conducted after the relocation of carcass burial pits.

Hydrochemical Characteristics and Nitrate-Nitrogen Contamination in Shallow Groundwater in Two Agricultural areas in Korea

  • Sul-Min Yun;Hang-Tak Jeon;Ji-Min Hwang;MoonSu Kim;HyunKoo Kim;Se-Yeong Hamm
    • 한국지구과학회지
    • /
    • 제44권4호
    • /
    • pp.291-306
    • /
    • 2023
  • Shallow groundwater in rural areas is primarily polluted by agricultural activities. Nitrate-nitrogen is an indicator of artificial pollution. In this study, the hydrochemical characteristics and nitrate-nitrogen pollution of shallow groundwater were examined in two agricultural villages (Hyogyo-ri and Sinan-ri) in Chungcheongnam-do Province, Korea. Physicochemical quality analysis of shallow groundwater and stream water in the field, and chemical analysis in the laboratory were conducted from July 2020 to October 2021. In Hygyo-ri and Sinan-ri villages, shallow groundwater mainly belonged to the Ca-Cl, Ca-H CO3, Na-HCO3, and Na-Cl types, whereas stream water predominantly belonged to the Ca-HCO3 type. The nitrate-nitrogen concentration in shallow groundwater varied depending on the season, displaying an increased concentration of nitrate-nitrogen in the dry season compared to the rainy season. Stream water may be influenced by runoff into villages from the surrounding area, although both shallow groundwater and stream water are affected by artificial pollution. In addition, the nitrate-nitrogen concentration in stream water was lower than that in shallow groundwater.

대전지역 약수의 수질특성과 관리방안

  • 정찬호;김은지;문병진
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 추계학술발표회
    • /
    • pp.15-18
    • /
    • 2001
  • Sixty natural springs and wells used as community facilities for drinking water are developed along mountain climbing way of suburban area and residential area in Daejeon City. In this study, the seasonal variation of their water quality and hydrochemical characteristics were investigated. Some natural springs are vulnerable to bacilli contamination because of their short residence time and shallow circulation in subsurface environment. The waters show hydrochemical types of Ca-HCO$_3$ and Na-HCO$_3$, and are characterized by low electrical conductance and weak acidic pH.

  • PDF

균열암반 물리검층 자료의 수리지질특성에 대한 다변량 통계분석

  • 고경석;황세호;이진수;김용제;김태희
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.373-376
    • /
    • 2004
  • To investigate the vertical petrological and hydrological characteristics of fractured rock, geophysical and chemical logging were executed at 5 boreholes installed in the study area. The geophysical and hydrochemical logging data were analysed by using principal components analysis (PCA). Three main variables from PCA explained 86.4% of total variance of geophysical log data. The PCA results showed that PCl is closely related to groundwater properties and PC2 and PC3 are influenced by rock and fracture properties. Hydrochemical analysis indicated the presence of highly fractrued zone at the depth of 60m.

  • PDF

강원도 철원 샘통과 주변 지표수 및 지하수의 수리화학 및 미생물 군집 특성 연구 (Hydrochemical and Microbial Community Characteristics of Spring, Surface Water and Groundwater at Samtong in Cheorwon, South Korea)

  • 유한선;문진아;김희정
    • 지질공학
    • /
    • 제33권2호
    • /
    • pp.257-273
    • /
    • 2023
  • 본 연구에서는 철원 샘통과 그 일대의 지하수 및 지표수의 지구화학 및 미생물 군집 특성을 분석하였다. 2022년 12월 15일 철원 샘통 5개, 지하수 3개 그리고 지표수 2개, 총 10개 지점에서 야외조사를 수행하였다. 수화학분석 결과 샘통과 지표수는 모두 Ca-HCO3 유형에 도시되었으며, 지하수 한 지점(CSG3)을 제외한 나머지 지점은 모두 Na-HCO3 유형에 도시되었다. 또한 모든 지점은 같은 기상수의 기원으로 물암석 반응이 우세하게 영향을 준 것으로 보인다. 라돈 농도 분석 결과 지표수는 1,000 Bq/m3 이하, 샘통은 1,000~10,000 Bq/m3, 지하수는 1,000~1,000,000 Bq/m3의 농도 값을 보였다. 미생물 군집 구조 분석 결과 문(phylum) 비율 중 가장 우점종은 Proteobacteria, Planctomyceta, Verrucomicrobia, Acidobacteria, Actinomycetota 순으로 나타났다. 비계량적 다차원 척도법 모델링(NMDS)에서는 수온, pH, Si가 현장의 토착미생물과 밀접한 연관성을 보였다. NMDS와 CCA 결과에서 샘통에 영향을 미치는 주요 환경적 요소는 온도, Mg, Si로 나타나며, 그 환경적인 영향과 관련된 주요 미생물은 Acidobacteria와 Proteobacteria 중 Pseudomonas brenneri이다. 수화학 및 미생물 군집 분석 모두 샘통과 지하수 CSG3 지점에서 유사한 결과를 보였으며, 현무암 대수층의 영향을 받은 것으로 추정된다.