• Title/Summary/Keyword: Hydrocarbon Fuels

Search Result 160, Processing Time 0.019 seconds

Recent Progress in the Catalytic Decomposition of Methane in a Fluidized Bed for Hydrogen and Carbon Material Production (수소 및 탄소소재 생산을 위한 메탄 유동층 촉매분해 기술의 최근 동향)

  • Keon Bae;Kang Seok Go;Woohyun Kim;Doyeon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.175-188
    • /
    • 2023
  • Global interest in hydrogen energy is increasing as an eco-friendly future energy that can replace fossil fuels. Accordingly, a next-generation hydrogen production technology using microorganisms, nuclear power, etc. is being developed, while a lot of time and effort are still required to overcome the cost of hydrogen production based on fossil fuels. As a way to minimize greenhouse gas emissions in the hydrocarbon-based hydrogen production process, methane direct decomposition technology has recently attracted attention. In order to improve the economic feasibility of the process, the simultaneous production of value-added carbon materials with hydrogen can be one of the most essential aspects. For that purpose, various studies on catalysis related to the quality and yield of high-value carbon materials such as carbon nanotubes (CNTs). In terms of process technology, a number of the research and development of fluidized-bed reactors capable of continuous production and improved gas-solid contact efficiency has been attempted. Recently, methane direct decomposition technology using a fluidized bed has been developed to the extent that it can produce 270 kg/day of hydrogen and 1000 kg/day of carbon. Plus, with the development of catalyst regeneration, separation and recirculation technologies, the process efficiency can be further improved. This review paper investigates the recent development of catalysts and fluidized bed reactor for methane direct pyrolysis to identify the key challenges and opportunities.

Development of Reduced Graphene Oxide/Sr0.98Y0.08TiO3-δ Anode for Methane Fuels in Solid Oxide Fuel Cells (메탄연료사용을 위한 고체산화물 연료전지용 Reduced Graphene Oxide/Sr0.98Y0.08TiO3-δ 연료극 개발)

  • Hyung Soon Kim;Jun Ho Kim;Su In Mo;Gwang Seon Park;Jeong Woo Yun
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.296-301
    • /
    • 2023
  • Solid oxide fuel cell has received more attention recently due to the fuel flexibility via internal reforming. Commonly used Ni/YSZ anode, however, can be easily deactivated by carbon coking in hydrocarbon fuels. The carbon deposition problem can minimize by developing alternative perovskite anode. This study is focused on improving conductivity and catalytic activity of the perovskite anode by introducing rGO (reduced graphene oxide). Sr0.92Y0.08TiO3(SYT) anode with perovskite structure was synthesized with 1wt% of rGO. The presence of rGO during anode fabricating process and cell operation is confirmed through XPS and Raman analysis. The maximum power density of rGO/SYT anode improved to 3 times in H2 and 6 times in CH4 comparing to that of SYT anode due to the high electrical conductivity and good catalytic activity for CH4.

Tin Oxide-modulated to Cu(OH)2 Nanowires for Efficient Electrochemical Reduction of CO2 to HCOOH and CO (SnO2/Cu(OH)2 Nanowires 전극을 이용한 전기화학적 이산화탄소 환원 특성)

  • Chaewon Seong;Hyojung Bae;Sea Cho;Jiwon Heo;Eun Mi Han;Jun-Seok Ha
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.91-97
    • /
    • 2023
  • Electrochemical (EC) CO2 reduction is a promising method to convert CO2 into valuable hydrocarbon fuels and chemicals ecofriendly. Here, we report on a facile method to synthesize surface-controlled SnO2/Cu(OH)2 nanowires (NWs) and its EC reduction of CO2 to HCOOH and CO. The SnO2/Cu(OH)2 NWs (-16 mA/cm2) showed superior electrochemical performance compared to Cu(OH)2 NWs (-6 mA/cm2) at -1.0 V (vs. RHE). SnO2/Cu(OH)2 NWs showed the maximum Faradaic efficiency for conversion to HCOOH (58.01 %) and CO (29.72 %). The optimized catalyst exhibits a high C1 Faradaic efficiency stable electrolysis for 2 h in a KHCO3 electrolyte. This study facilitates the potential for the EC reduction of CO2 to chemical fuels.

Long-term Changes in Polycyclic Aromatic Hydrocarbon Content of Paddy Soils in Youngnam area (영남지역 논토양에서 다핵방향족탄화수소 농도의 장기변동)

  • Nam, Jae-Jak;Hong, Suk-Young;Lee, Hee-Dong;Park, Chang-Young;Lee, Sang-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.3
    • /
    • pp.196-200
    • /
    • 2007
  • This study was to determine long-term changes of polycyclic aromatic hydrocarbons (PAHs) in paddy soils. To do this, we analyzed 16 PAHs in soil samples which were stored in the archive of Yeoungnam Agricultural Research Institute, Milyang, Kyeoungnam province, Korea. The samples used in this study were collected every year from 1978 to 2001 at the plough layer (0-12cm). In average, total PAHs accumulated in paddy soil was continuously decreased since 1980 when it peaked to be $237g\;kg^{-1}$. No significant changes were observed for PAHs having 5-6 phenyl rings for the past two decades, whereas PAHs with 3-4 phenyl rings were greatly decreased, reaching at about a half levels of the 1980's. It is worthy to be noted that the large reduction in PAHs with 3-4 phenyl rings has mainly been attributed to the decrease of PAHs in paddy soils for last 20 years. The major compounds accumulated were: phenanthrene > fluoroanthene > chrysene/benzo(b)fluoroanthene. The present results suggest that the switch of main fuels used in Korea from coal to petroleum around at the end of 1970's is likely contributed to decrease in PAH accumulation in paddy soils.

Evaluation on the Characteristics of Liquefied Natural Gas as a Fuel of Liquid Rocket Engine (액체로켓엔진 연료로서 액화천연가스 특성 평가)

  • Han, Poong-Gyoo;NamKoung, Hyuck-Joon;Kim, Kyoung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.66-73
    • /
    • 2004
  • As a rocket propellent of hydrocarbon fuels, the characteristics of liquefied natural gas was evaluated with the viewpoint of the constituents and content, the cooling performance as a coolant, and characteristic velocity and specific impulse as parameters of the engine performance. Content of methane was a principal factor to determine the characteristics as a rocket propellant and more than 90% of it was needed as a fuel and coolant in the regenerative cooled liquid rocket engine. Some constituents of the liquefied natural gas can be frozen by the pre-cooling of the pipe lines, therefore they can be a factor disturbing the normal working of engine. In case the content of methane is around 90% in the liquefied natural gas, a normalized stoichiometric O/F mixture ratio of 0.75 is suggested for a nominal operation condition to get the maximum specific impulse and characteristic velocity.

A Study on the NOx Emission Characteristics of HCNG Engine (HCNG 엔진의 NOx 배출특성에 관한 연구)

  • Park, Cheol-Woong;Kim, Chang-Gi;Choi, Young;Won, Sang-Yeon;Lee, Sun-Youp
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.78-83
    • /
    • 2011
  • Natural gas is one of the most promising alternatives to gasoline and diesel fuels because of its high thermal efficiency and lower harmful emissions, including $CO_2$. Although the high octane value of natural gas increases engine output and efficiency due to the high compression ratio, this fuel is prone to such difficulties as a narrow limit of inflammability and a slow combustion speed in the lean burn operation domain, leading to unstable combustion and higher emissions of harmful exhaust gases. Hydrogen blended with natural gas can extend the lean burn limit while maintaining stable, efficient combustion and achieving lower NOx, hydrocarbon and green house gas emissions. In this study, the effect of hydrogen addition on an engine performance and NOx emission characteristics was investigated in a heavy duty natural gas engine. The results showed that thermal efficiency was increased and NOx emissions were reduced due to the expansion of lean operation range under stable operation. NOx emission can be significantly reduced with the retard of spark advance timing.

On-road Investigation of PM Emissions according to Vehicle Fuels (Diesel, DME, and Bio-diesel) (Diesel, DME, Bio-diesel 연료가 실제 도로 주행 조건에서 입자상물질 배출에 미치는 영향 파악)

  • Lee, Seok-Hwan;Kim, Hong-Seok;Park, Jun-Hyuk;Cho, Gyu-Baek
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.88-97
    • /
    • 2012
  • To measure the traffic pollutants with high temporal and spatial resolution under real conditions, a mobile emission laboratory (MEL) was designed. The equipment of the mini-van provides gas phase measurements of CO, NOx, CO2 and THC (Total hydrocarbon), and number density & size distribution measurements of fine and ultra-fine particles by a fast mobility particle sizer (FMPS) and a condensation particle counter (CPC). The inlet sampling port above the bumper enables the chasing of different type of vehicles. This paper introduces the technical details of the MEL and presents data from the experiment in which a MEL chases a city bus fuelled by diesel, DME and Bio-diesel. The dilution ratio was calculated by the ratio of ambient NOx and tail-pipe NOx. Most particles from the bus fuelled by diesel were counted under 300 nm and the peak concentration of the particles was located between 30 and 60 nm. However, most particles in the exhaust of the bus fuelled by DME were nano-particles (diameter: less than 50 nm). The bus fuelled by Bio-diesel shows less particle emissions compare to diesel bus due to the presence of the oxygen in the fuel.

The Characteristics of Ozone Formation from a Gaseous Fueled SI Engine with Various Operating Parameters (여러 가지 운전조건에 따른 가스연료엔진 오존발생량 연구)

  • 김창업;강건용;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.86-92
    • /
    • 2003
  • To analyze the characteristics of ozone formation, measurements of the concentrations of individual exhaust hydrocarbon species have been made under various engine operating parameters in a 2-liter 4-cylinder engine for natural gas and LPG. Tests were performed at constant engine speed, 1800 rpm for two compression ratios of 8.6 and 10.6, with various operating parameters, such as excess air ratio of 1.0~1.6, bmep of 250~800 na and spark timing of BTDC 10~$55^{\circ}$. It was found that the natural gas gave the less ozone formation than LPG in various operating conditions. This was accomplished by reducing the emissions of propylene($C_3H_6$), which has relatively high maximum incremental reactivity factor, and propane($C_3H_8$) that originally has large portion of LPG. In addition, the natural gas show lower values in the specific reactivity and brake specific reactivity. Higher compression ratio of the test engine showed higher non methane HC emissions. However, specific reactivity value decreased since fuel species of HC emissions increase. brake specific reactivity showed almost same values under high bmep, over 500kPa for both fuels. This means that the increase of non methane HC emissions and the decrease of specific reactivity with higher bmep affect each other simultaneously. With advanced spark timing, brake specific reactivity values of LPG were increased while those of natural gas showed almost constant values.

The High Performance Liquid Chromatography (HPLC) Analysis of Polycyclic Aromatic Hydrocarbons (PAHs) in Oysters from the Intertidal and Subtidal Zones of Chinhae Bay, Korea

  • Lee Ki Seok;Noh Il;Lim Cheol Soo;Chu Su Dong
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.2 no.1
    • /
    • pp.57-68
    • /
    • 1998
  • Polycyclic aromatic hydrocarbons (PAMs) are ubiquitous contaminants in marine environments. PAMs enter estuarine and nearshore marine environment via several routes such as combustion of fossil fuels, domestic and industrial effluents and oil spills. PAHs have been the focus of numerous studies in the world because they are potentially carcinogenic, mutagenic, and teratogenic to aquatic organisms and humans from consuming contaminated food. However, one can hardly find any available data on PAM content in marine organisms in Korea. The present study was carried out in order to determine PAM content in oysters from the intertidal and subtidal zones of Chinhae Bay, which is located in near urban communities and an industrial complex, and the bay is considered to be a major repositories of PAHs. 16 PAHs were analyzed by High Performance Liquid Chromatography (HPLC) with uv/vis and fluorescence detectors in oysters: they are naphthalene (NPTHL), acenaphthylene (ANCPL), acenaphthylene (ACNPN), fluorene (FLURN), phenanthrene (PHEN), anthracene (ANTHR), fluoranthene (FLRTH), pyrene (PYR), benzo(a)anthracene (BaA), chrysene (CHRY), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF), benzo(a)pyrene (BaP), dibenz(a,h)anthracene(DahA), benzo(g,h,i)peryne (BghiP) and indeno(1,2,3,-cd)pyrene (I123cdP). The PAM contents in oysters from the intertidal and subtidal zones of Chinhae Bay ranged from < 0.1 to 992.0 ug/kg (mean $69.8\pm9.8$ ug/kg).

  • PDF

Theoretical Performance Prediction Program of Pulse Detonation Engines (펄스 데토네이션 엔진 이론 성능 예측 프로그램)

  • Kim, Tae-Young;Kim, Ji-Hoon;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.552-560
    • /
    • 2014
  • Pulse Detonation Engine(PDE) has been investigated as a next generation propulsion system with the advantages of the higher thermal efficiency by the compression effect and the wide operation ranges from zero speed at ground. In the present study, an efficient theoretical PDE performance prediction program was developed for realistic propellants based on the Endo's theory combining the Chapman-Jouguet detonation theory and expansion process of burnt gas in a constant area tube. The program was validated through the comparison with the experimental data obtained by a ballistic pendulum measurement. PDE performance analyses were carried out for various hydrocarbon fuels and oxidizer compositions by changing the mixture equivalence ratio and initial conditions. Theoretical PDE performance database could be established as a result of the analyses.