• Title/Summary/Keyword: Hydrocarbon(HC)

Search Result 92, Processing Time 0.022 seconds

디젤 연소 전략에 따른 배기가스 및 탄화수소 종 분석 (Diesel Combustion Strategies Effect on Exhaust Emissions and Hydrocarbon Species)

  • 한만배
    • 대한기계학회논문집B
    • /
    • 제36권7호
    • /
    • pp.759-765
    • /
    • 2012
  • 1.7L 커먼레일 직접분사 디젤 엔진을 이용하여 1500rpm 3.9bar BMEP 조건에서 세가지 연소 전략에 따른 배기가스 배출 특성 및 탄화수소 종 분석을 수행하였다. 첫째 전략은 EGR 을 사용하지 않고 연료 분할 분사를 이용하는 방법(split injection), 둘째는 적절한 EGR 적용 및 단일 연료분사 방법(single-1)이며 셋째는 다량의 EGR 및 레일 압력 증대 등을 통한 저온디젤연소(single-2)이다. 본 실험 조건으로부터 split injection 방법과 single-1 방법은 PM-NOx 상반 관계를 보였고, single-2 방법은 PM-NOx 상관관계에서 벗어나 PM 및 NOx 동시 저감이 가능하였다. 탄화수소 종 분석 결과, THC 배출 경향과 동일하게 탄소번호에 관계없이 split injection 이 가장 적은 배출을 보였고, single-1 그리고 single-2 의 순서로 많이 배출하였다. 메탄, 아세틸렌 및 CO 의 THC 에 대한 비율은 공연비가 농후해 짐에 따라서 증가하였고 이는 공연비가 농후에 따른 연소 영역에서 산소 농도 감소로 열해리가 증가하였기 때문이다.

건멸치의 방사선 조사 확인을 위한 열발광, 전자스핀공명, Hydrocarbon 및 2-Alkylcyclobutanone의 다중분석 (Multistep Identification of γ-Irradiated Boiled-Dried Anchovies by Analysis of Thermoluminescence, Electron Spin Resonance, Hydrocarbon and 2-Alkylcyclobutanone)

  • 노정은;권중호
    • 한국식품영양과학회지
    • /
    • 제32권1호
    • /
    • pp.8-14
    • /
    • 2003
  • 건 멸치에 대한 방사선 조사 여부의 확인을 위한 다중 분석을 실시하였다 열발광(TL) 분석에서 건 멸치의 비조사구는 28$0^{\circ}C$ 부근에서 매우 낮은 peak를 나타내었다 방사선 조사구 는 20$0^{\circ}C$ 전후에서 선량의존적인 높은 peak를 나타내었다. 재조사에 의한 TL ratio의 산출은 조사 여부 확인의 신뢰도를 높여주었다. 전자스핀공명(ESR) 분석에서는 건멸치의 뼈를 사용하여 hydroxyapatite 유래의 radical을 확인할 수 있다. 이때 ESR signal은 선량의존적 이었으며, -2$0^{\circ}C$에서 6개월 저장 이후에도 측정이 가능하였다. 건 멸치에서 6종의 hydrocarbon (HC)류가 분석되었고, 이 중 1,7-hexadecadiene과 1-hexadecene는 방사선 조사구 에서만 검출되었다. 건 멸치에서 3종의 2-alkylcyclobutanone(2-ACB)류가 분석되었으며, 2-do-decylcyclobutanone와 2-tetradecylcyclobutanone는 방사선 조사구에서만 검출되었다. 이상의 방사선 조사 유래의 HC와 2-ACB는 조사선량에 따라 의존적으로 증가하였다. HC와 2-ACB는 저장 6개월 후에도 미량이지만 검출이 가능하였으나 TL- 및 ESR 분석은 좀 더 간편한 분석방법으로 나타났다.

기체 연료를 사용한 전기점화기관에서 운전조건이 HC 배출물 성분에 미치는 영향 (Effects of Operation Conditions on Hydrocarbon Components Emitted from SI Engine with Gaseous Fuels)

  • 박종범;최희명;이형승;김응서
    • 한국자동차공학회논문집
    • /
    • 제6권1호
    • /
    • pp.108-121
    • /
    • 1998
  • Using gas chromatography, the light hydrocarbon emissions were analyzed from SI engine fueled with methane and liquified petroleum gas(LPG), and the effects of fuel and engine operating condition were discussed. For this purpose, 14 species of light hydrocarbon including 1, 3-butadiene were separated, calibrated with standard gas, and measured from undiluted emissions. The brake specific hydrocarbon emission(BSHC) and ozone forming potential(BSO)3 were calculated and discussed with the changes of fuel, engine speed, load, fuel/air equivalence ratio, coolant temperature, and spark timing. As a result, exhaust emission was composed of mainly fuel composed of mainly fuel comp- onent and other olefin components of similar carbon number. The olefin components such as ethylene and propylene determine most of the ozone forming potential. The fraction of fuel component in total hydrocarbon emission was bigger with methane fuel than with LPG fuel. Also fuel fraction increased at high speed or high speed or high temperature of exhaust gas, and to lesser extent with high coolant temperature and retarded spark. However, the effect of equivalence ratio had different tendency according to fuels.

  • PDF

미연배기가스 점화 기술을 이용한 배기저감 (Emission Reduction using Unburned Exhaust Gas Ignition)

  • 김득상;강봉균;양창석;조용석
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.39-47
    • /
    • 2003
  • UEGI (Unburned Exhaust Gas Ignition) is an alternative method for fast light-off of a catalyst. It ignites the unburned exhaust mixture using two glow plugs installed in the upstream of the close-coupled catalysts. In addition, a hydrocarbon adsorber was applied to the UEGI, for more effective reduction of HC emission. Engine bench tests show that the CCC reaches the light-off temperature laster than the baseline exhaust system and HC and CO emissions are reduced significantly during the cold start. From the vehicle test, it was observed that a few amount of HC emission was reduced even the catalysts were aged. It is expected to develop a solution kit applicable to a new vehicle or used one, to meet the emission regulation

가스연료엔진에서 설계변수에 따른 HC 배출 특성 (He Emissions from a Gaseous Fueled Engine with Various Design Parameters)

  • 김창업;배충식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1999년도 제19회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.183-188
    • /
    • 1999
  • For two engine design parameters; compression ratio and intake swirl ratio, measurement of concentrations of hydrocarbon species has been made as a function of various air-fuel ratio in order to investigate the ozone formation of HC emissions from LPG fuel. Higher compression ratio gave lower SR values due to larger aIkan species and higher BSR values because of larger NMHC generation. Swirl ratio did not affect HC emissions and ozone formation. For ${\lambda}=1.1{\sim}1.2$, higher SR values resulted from the species of aIken which has higher MIRs were highly produced. Leaner mixture showed lower SR values due to the increase of the aIkan which has a lower MIR.

  • PDF

PCV 밸브의 스풀 동적거동에 따른 내부유동 특성에 관한 연구 (A STUDY ON INTERNAL FLOW CHARACTERISTICS OF PCV VALVE ACCORDING TO SPOOL DYNAMIC BEHAVIOR)

  • 이종훈;이연원;김재훈
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.223-227
    • /
    • 2005
  • A PCV valve is a part to control the flow rate of Blowby gas in a PCV system. A PCV system re-burns Blowby gas with fuel in a combustion chamber. Some gas enters to a crankcase room through the gap between piston ring and engine cylinder wall. This gas si called 'Blowby gas'. This gas causes many problems. In environmental view, Blowby gas includes about $25\~35\%$ hydrocarbon{HC) of total generated HC in an automobile. Hydrocarbon is a very harmful pollutant element in our life. In mechanical view, Blowby gas has some reaction with lubricant oil of crankcase room. Then, this causes lubricant oil contamination, crankcase corrosion and a decrease fo engine efficiency. Consequently, Blowby gas must be eliminated from a crankcase room. In this study, we simulated internal flow characteristics in a PCV valve according to spool dynamic behavior using local remeshing method And, we programmed our sub routine to simulate a spool dynamic motion. As results, spool dynamic behavior is periodically oscillated by the relationship between fluid force and elastic force of spring. And its magnitude is linearly increased by the differential pressure between inlet and outlet. Also, as spool is largely moved, flow area is suddenly decreased at orifice. For this reason, flow velocity is rapidly decreased by viscous effect.

  • PDF

Evaporation Heat Transfer Characteristics of Hydrocarbon Refrigerants R-290 and R-600a in the Horizontal Tubes

  • Roh, Geon-Sang;Son, Chang-Hyo;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권1호
    • /
    • pp.74-83
    • /
    • 2007
  • This paper presents the experimental results of evaporation heat transfer coefficients of HC refrigerants (e.g. R290 and R600a). R-22 as a HCFCs refrigerant and R-l34a as a HFCs refrigerant in horizontal double pipe heat exchangers, having four different inner diameters of 10.07, 7.73, 6.54 and 5.80 mm respectively. The experiments of the evaporation process were conducted at mass flux of $35.5{\sim}210.4 kg/m^2s$ and cooling capacity of $0.95{\sim}10.1 kW$. The main results were summarized as follows : The average evaporation heat transfer coefficient of hydrocarbon refrigerants(R-290 and R-600a) was higher than the refrigerants, R-22 and R-l34a. In comparison with R-22 the evaporation heat transfer coefficient of R-l34a is approximately $-11{\sim}8.1 %$ higher. R-290 is $56.7{\sim}70.1 %$ higher and R-600a is $46.9{\sim}59.7 %$ higher. respectively. In comparison with experimental data and some correlations, the evaporation heat transfer coefficients are well predicted with the Kandlikar's correlation regardless of a type of refrigerants and tube diameters.

배기가스의 온도 및 HC와 $O_2$의 조성 변화에 따른 DOC-CDPF의 재생 특성에 관한 실험적 연구 (An Experimental Study on Regeneration Characteristics by Variation of Exhaust Gas Temperature, HC and $O_2$ Concentrations on DOC-CDPF System)

  • 조용석;이성욱;이정섭;윤여빈;박영준
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.43-49
    • /
    • 2009
  • A catalyzed diesel particulate filter (CDPF) causes the progressive increase in back pressure of an exhaust system due to the loading of soot particles. To minimize pressure drop which is generated by CDPF, the filter should be regenerated when it collects a certain quantity of soot. It is important to know characteristics of regeneration of CDPF with various of exhaust gas temperatures and compositions. The oxidation of HC in DOC leads to increase gas temperature of DOC downstream. The increased gas temperature by DOC has an positive effect on CDPF regeneration. This study presents characteristics of regeneration of CDPF with DOC according to various gas composition, such as HC and $O_2$ concentration. The test-rig is used to control each gas composition and temperature during regeneration of CDPF. Experimental results indicate that the increased concentration of $O_2$ regenerates DPF more actively. With increasing HC concentration, the gas temperature of CDPF upstream increased due to more oxidation of HC. But excessive supply of HC leads to decrease of $O_2$ concentration in the CDPF, which makes it hard to regenerate CDPF.

미연 배기가스 점화 기술과 탄화수소 흡착기를 이용한 배기저감 (Exhaust Emissions Reduction using Unburned Exhaust Gas Ignition Technology and Hydrocarbon Adsorber)

  • 김충식;천준영;최진욱;김득상;김인탁;이윤석;엄인용;조용석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.150-155
    • /
    • 2000
  • Exhaust emissions from vehicles are the main source of air pollution. Many researchers are trying to find the way of reducing vehicle emissions, especially in the cold transient period of the FTP-75 test. In this study, UEGI (Unburned Exhaust Gas Ignition) technology, warming up the close-coupled catalytic converter (CCC) by igniting the unburned exhaust mixture using two glow plugs installed in the upstream of the catalyst, was developed. It was applied to an exhaust system with a hydrocarbon adsorber to ensure an effective reduction of HC emission during the cold start period. Results showed that the CCC reaches the light-off temperature (LOT) in a shorter time compared with the baseline exhaust system, and HC and CO emissions are reduced significantly during the cold start.

  • PDF

Piston Crevice Hydrocarbon Oxidation During Expansion Process in an SI Engine

  • Kyoungdoug Min;Kim, Sejun
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.888-895
    • /
    • 2003
  • Combustion chamber crevices in SI engines are identified as the largest contributors to the engine-out hydrocarbon emissions. The largest crevice is the piston ring-pack crevice. A numerical simulation method was developed, which would allow to predict and understand the oxidation process of piston crevice hydrocarbons. A computational mesh with a moving grid to represent the piston motion was built and a 4-step oxidation model involving seven species was used. The sixteen coefficients in the rate expressions of 4-step oxidation model are optimized based on the results from a study on the detailed chemical kinetic mechanism of oxidation in the engine combustion chamber. Propane was used as the fuel in order to eliminate oil layer absorption and the liquid fuel effect. Initial conditions of the burned gas temperature and in-cylinder pressure were obtained from the 2-zone cycle simulation model. And the simulation was carried out from the end of combustion to the exhaust valve opening for various engine speeds, loads, equivalence ratios and crevice volumes. The total hydrocarbon (THC) oxidation in the crevice during the expansion stroke was 54.9% at 1500 rpm and 0.4 bar (warmed-up condition). The oxidation rate increased at high loads, high swirl ratios, and near stoichiometric conditions. As the crevice volume increased, the amount of unburned HC left at EVO (Exhaust Valve Opening) increased slightly.