• Title/Summary/Keyword: Hydro-mechanical

Search Result 385, Processing Time 0.029 seconds

Micro Forming with Hydrostatic Pressure -Hydro-Mechanical Role Punching- (정수압을 이용한 미세 성형 -Hydro-Mechanical Hole Punching-)

  • 박훈재;김승수;최태훈;김응주;나경환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.386-390
    • /
    • 2003
  • As a trial of application of hydrostatic pressure in micro fomring, burr-free punching has been conducted by means of hydro-mechanical procedure. Even though it is in beginning stage, result of the hydro-mechanical punching is promising. Hydrostatic pressure helps delay fracture initiation and makes it possible to get clean shearing surface. Without any burr on both side of sheet, smooth holes are archived as intended. To verify the significance of hydro-mechanical punching, conventional punching is performed under similar conditions and relatively larger portion of fracture surface is detected in the punching hole. Despite the quality of sidewall is not good enough, it might be possible to make the hole shaped upright, reduce the roll-over radius and minimize the fracture surface by optimizing process parameters.

  • PDF

Finite Element Analysis of the Hydro-mechanical Punching Process (정수압을 이용한 홀 펀칭공정의 유한요소 해석)

  • Yoon J.H.;Kim S.S.;Kim E.J.;Park H.J.;Choi T.H.;Lee H.J.;Huh H.
    • Transactions of Materials Processing
    • /
    • v.15 no.3 s.84
    • /
    • pp.220-225
    • /
    • 2006
  • This paper investigates the characteristics of a hydro-mechanical punching process. The hydro-mechanical punching process is divided into two stages: the first stage is the mechanical half piercing in which an upper punch goes down before the initial crack is occurred; the second stage is the hydro punching in which a lower punch goes up until the final fracture is occurred. Ductile fracture criteria such as the Cockcroft, Brozzo and Oyane are adopted to predict the fracture of sheet material. The index values of ductile fracture criteria are calculated with a user material subroutine, VUMAT in the ABAQUS Explicit. The hydrostatic pressure retards the initiation of a crack in the upper region of the blank and induces another crack in the lower region of the blank during the punching process. The final fracture zone is placed at the middle surface of the blank to the thickness direction. The result demonstrates that the hydro-mechanical punching process makes a finer shearing surface than the conventional one as hydrostatic pressure increases.

FE Analysis for hydro-mechanical Hole Punching Process (Hydro-mechanical hole punching 공정의 유한요소 해석)

  • Yoon J. H.;Kim S. S.;Park H. J.;Choi T. H.;Lee H. J.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.159-162
    • /
    • 2005
  • The milli-components for electronic and medical device etc. have been manufactured by conventional process. Forming and machining process for those milli-components need tremendous cost and time because products require higher dimensional accuracy than the conventional ones. For instance, conventional mechanical punching process has many drawbacks for applying to high accuracy products. The final radius of hole can be varied and burr which interrupting another procedure is generated. Hydro-mechanical punching process makes possible to reduce amount of burr and obtain the fine shearing surface using the operating fluid. Hydrostatic pressure retards occurrence of initial crack and induces to locate the fracture surface in the middle of sheet to thickness direction. In this paper, Hydro-mechanical punching process is analyzed using finite element method and the effect of hydrostatic pressure is evaluated during punching process. The prediction of fracture is performed adopting the various ductile fracture criteria such as Cockcroft, Brozzo and Oyane's criterion using a user subroutine in ABAQUS explicit.

  • PDF

The Study of Sheet Hydro-Mechanical Forming Process for Aluminum Alloy Sheets by Experiment and Finite Element Analysis (알루미늄 판재 적용 십자형 액압성형 공정의 해석 및 실험적 고찰)

  • Shin, Dong-Woo;Yoon, Young-Sik;Kim, Dong-Ok;Ryu, Yong-Mun;Han, Beom-Suck;Gang, Dae-Geon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1000-1009
    • /
    • 2008
  • Hydro-mechanical forming process has numerous advantages compared to those of a conventional deep drawing process such as an excellent surface quality and low costs of dies. In fact, Hydro-mechanical forming is a desirable forming process for producing complex parts in automotive body components, and it is an excellent candidate for the forming process of aluminum panels. In this research, Hydro-mechanical forming process with a cross shape punch has been studied for Al-Si-Mg alloy sheets. Finite element analysis by LS-Dyna has predicted the deep drawing depth of the aluminum sheets, and the experiment has confirmed that result. Put Abstract text here.

  • PDF

Improvement of Connection Force in Hydro-Embedding Process Through the Rotational Piercing of the Connection Element (하이드로 임베딩시 연결요소의 회전을 통한 체결력 개선 연구)

  • Kim, Bong-Joon;Kim, Dong-Kyu;Kim, Dong-Jin;Moon, Young-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1503-1508
    • /
    • 2006
  • To increase the applicability and productivity of hydroforming process, hydro-embedding process was developed by combining the hydro-forming process with embedding process simultaneously. It is necessary in the automotive parts to form hollow bodies with connection elements which combine one part with another. The hydro-embedding process is embedding the connection element hydraulically during the operating steps of the hydroforming. In this study, technique of rotational piercing is added on the existing hydro-embedding to increase the connection force of hydro-embedded element. To estimate the feasibility of new trial process, integrated researches on the hydro-embedding process technology have been performed by analyzing the deformed mode of the tubes and the optimal process parameters for various shapes of the connection elements.

Review on Methods of Hydro-Mechanical Coupled Modeling for Long-term Evolution of the Natural Barriers

  • Chae-Soon Choi;Yong-Ki Lee;Sehyeok Park;Kyung-Woo Park
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.429-453
    • /
    • 2022
  • Numerical modeling and scenario composition are needed to characterize the geological environment of the disposal site and analyze the long-term evolution of natural barriers. In this study, processes and features of the hydro-mechanical behavior of natural barriers were categorized and represented using the interrelation matrix proposed by SKB and Posiva. A hydro-mechanical coupled model was evaluated for analyzing stress field changes and fracture zone re-activation. The processes corresponding to long-term evolution and the hydro-mechanical mechanisms that may accompany critical processes were identified. Consequently, practical numerical methods could be considered for these geological engineering issues. A case study using a numerical method for the stability analysis of an underground disposal system was performed. Critical stress distribution regime problems were analyzed numerically by considering the strata's movement. Another case focused on the equivalent continuum domain composition under the upscaling process in fractured rocks. Numerical methods and case studies were reviewed, confirming that an appropriate and optimized modeling technique is essential for studying the stress state and geological history of the Korean Peninsula. Considering the environments of potential disposal sites in Korea, selecting the optimal application method that effectively simulates fractured rocks should be prioritized.

Experimental Study on Adjustment of Inlet Nozzle Section to Flow Rate Variation for Darrieus-type Hydro-Turbine

  • Watanabe, Satoshi;Shimokawa, Kai;Furukawa, Akinori;Okuma, Kusuo;Matsushita, Daisuke
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.1
    • /
    • pp.30-37
    • /
    • 2012
  • A two dimensional Darrieus-type turbine has been proposed for the hydropower utilization of extra-low head less than 2m. In a practical use of Darrieus-type hydro-turbine, head and flow rate may be varied temporally and seasonally. Considering that the cost advantage is required for the low head hydro turbine system, the Darrieus turbine should be operated with high efficiency in the wider range of flow rate possibly by using an additional device with simpler mechanism. In the present paper, an adjustment of inlet nozzle section by lowering the inlet nozzle height is proposed to obtain the preferable inlet velocity in low flow rate conditions. Effects of resulting spanwise partial inlet flow are investigated. Finally, an effective modification of inlet nozzle height over flow rate variation is shown.

Technical feasibility study for power generation from a potential mini hydro site nearby Shoolini University

  • Pundir, Anil;Kumar, Anil
    • Advances in Energy Research
    • /
    • v.2 no.2
    • /
    • pp.85-95
    • /
    • 2014
  • Small Hydro-Power (SHP) is an environmental friendly technology. Usually hydro power generation projects are viewed as constructing large dams and reservoirs but available new research and engineering techniques have helped hydro power generation without large dams and without large reservoirs. In India, there are several water installations, irrigation dams, canals, streams or running rivers not tapped to generate power. In these cases the existing system and facilities can help in generating power with less investment and time. This area is yet unexplored. Harnessing a stream for hydroelectric power is a major undertaking for the energy crises and the global issues to go green. In this technical note a potential site for mini hydro power plant nearby Shoolini University is identified and examined for the economic feasibility.

Internal Flow Characteristics of a Francis Hydro Turbine Model by Internal Flow Passage Shapes

  • Chen, Zhenmu;Wei, Qingsheng;Singh, Patrick Mark;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.5
    • /
    • pp.19-25
    • /
    • 2015
  • As a core component of a hydropower station, hydro turbines play a vital role in the integration of a power station. Research on the technology of hydro turbine is continuously increasing with the development of water electricity. On the basis of one-dimensional loss analysis, for three-dimension design, there are a lot of dimension of the internal flow passage shapes that are determined by experience. Therefore, the effect of the internal flow passage shapes on the performance and internal flow characteristics of a Francis hydro turbine model is investigated in this study. In this study, the small curvature of runner blade trailing edge shape is good for improving the efficiency of Francis turbine. The straight stay vane leading edge is good for suppressing the secondary flow. Moreover, suitable tongue passage shape and stay vane number improve the performance of the turbine considerably.

Runner Design and Internal Flow Characteristics Analysis for an Ns=200 Francis Hydro Turbine Model

  • Hwang, Yeong-Cheol;Chen, Zhenmu;Choi, Young-Do;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.8
    • /
    • pp.698-703
    • /
    • 2016
  • Francis hydro turbines have been most widely used throughout the world because of their wide range of head and flow rate applications. In most applications, they are used for high heads and flow rates. Currently, Korea is developing technology for Francis hydro turbine design and manufacture. In order to understand the internal details of Francis hydro turbines further, a new Francis turbine model runner is designed and model internal flow characteristics are investigated. The specific speed of the Francis hydro turbine model runner is $Ns=200m-kW-min^{-1}$. The runner blade is designed successfully according to the port area and one-dimensional loss analysis. The best efficiency point of the Francis hydro turbine model achieves 90% at the design condition. CFD analysis yields a hill chart of the Francis hydro turbine model for use in predicting performance.