• Title/Summary/Keyword: Hydraulic-Rubber Knee Damper

Search Result 4, Processing Time 0.02 seconds

Development of a Stance & Swing Phase Control Transfemoral Prosthesis (입각기와 유각기 제어 대퇴의지의 개발)

  • Kim, Shin-Ki;Kim, Jong-Gwon;Hong, Jeong-Hwa;Kim, Gyeong-Hun;Mun, Mu-Seong;Lee, Sun-Geol;Baek, Yeong-Nam
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.504-509
    • /
    • 2000
  • In this study, a transfemoral prosthesis system of which stance phase and swing phase are controlled during walking has been developed for the recovery of the biomechanical function of the amputated leg. It consists of a 5 bar link mechanism, a hydraulic-rubber knee damper for stance phase control and a pneumatic cylinder controlled via a microprocessor for stance phase control. The mechanical characteristics and behaviour of the knee damper which absorbs the impact energy generated at the heel contact was investigated. The characteristics of the pneumatic cylinder essential for the speed adaptation of the prosthesis during swing phase was also studied for its mechanical characteristics. The prosthesis was subject to the clinical test ant the gait characteristics obtained were very close to those of normal. The stance and swing controlled prosthesis that were developed in this study showed good stability during the stance phase and showed good controllability during the swing phase.

  • PDF

Development of a Stance and Swing Phase Control Transfemoral Prosthesis (입각기.유각기 동시제어식 대퇴의지의 개발)

  • Kim, Sin-Gi;Kim, Gyeong-Hun;Mun, Mu-Seong;Lee, Sun-Geol;Baek, Yeong-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.685-694
    • /
    • 2001
  • In this study, a transfemoral prosthesis system of which both stance phase and swing phase are controllable has been developed for the recovery of the biomechanical function of the amputated leg. It consists of a 5 bar link mechanism, a hydraulic-rubber knee damper for stance phase control and a pneumatic cylinder controlled via a microprocessor for stance phase control. The mechanical characteristics of the knee damper which absorbs the impact energy generated at the heel contact were investigated. The characteristics of the pneumatic cylinder essential for the speed adaptation of the prosthesis during swing phase were also studied for its mechanical characteristics. The prosthesis was subject to the clinical tests, and the gait characteristics obtained were very close to those of normal subjects. The stance and swing controlled prosthesis that were developed in this study showed good stability during the stance phase and showed good controllability during the swing phase.

Development of a Stance Phase Control Transfemoral Prosthesis Using the 5-Axes Link (5축 링크를 이용한 입각기 제어 대퇴의지의 개발)

  • 김신기;홍정화;김경훈;문무성;이순걸;백영남
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.29-34
    • /
    • 2001
  • 본 연구의 목적은 대퇴부가 절단된 다리의 생체 역학적 기능을 복구할 수 있게 하는 의지의 개발을 위하여 5축 링크, 슬관절 완충장치를 사용하여 보행시 입각기를 제어할 수 있는 대퇴 의지 시스템 개발에 있다. 이를 위하여 입각기시 대퇴의지와 지면간 접촉 중 충격 에너지 흡수를 하는 슬관절 완충장치의 기계적 특성 및 거동을 분석하였다. 임상시험을 통하여 개발된 대퇴의지의 성능을 검증한 결과 대퇴 절단 피검자들의 보행특성은 정상인의 보행에 근접한 경향을 보였다. 결론적으로 본 연구에서 개발된 입각기 대퇴의지는 입각기시 현저한 보행 안전성을 보였다.

  • PDF

Development of Multi-rotational Prosthetic Foot for Lower Limb Amputee (하지 절단자를 위한 다축 회전이 가능한 인공발의 개발)

  • Shin, Hyunjun;Park, Jin-Kuk;Cho, Hyeon-Seok;Ryu, Jei-Cheong;Kim, Shin-Ki
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.4
    • /
    • pp.305-313
    • /
    • 2016
  • Movements of the lower limb are important for normal walking and smooth oscillation of the center of gravity. The ankle rotations such as dorsi-flexion, plantar-flexion, inversion and eversion allows the foot to accommodate to ground during level ground walking. Current below knee (B/K) prostheses are used for replacing amputated ankle, and make it possible for amputees to walk again. However, most of amputees with B/K prostheses often experience a loss of terrain adaptability as well as stability because of limited ankle rotation. This study is focused on the development of multi-rotational prosthetic foot for lower limb amputee. Our prosthesis is possible for amputees to easily walk in level ground by rotating ankle joint in sagittal plane and adapt to the abnormal terrain with ankle rotation in coronal plane. The resistance of ankle joint in the direction of dorsi/plantar-flexion can be manually regulated by hydraulic damper with controllable nozzle. Furthermore, double layered rubber induce the prosthesis adapt to irregular ground by tilting itself in direction of eversion and inversion. The experimental results highlights the potential that our prosthesis induce a normal gait for below knee amputee.