• Title/Summary/Keyword: Hydraulic-Diameter

Search Result 477, Processing Time 0.03 seconds

Optimizing the Configurations of Cooling Channels with Low Flow Resistance and Thermal Resistance (냉각유로 형상변화에 따른 유동 및 열저항 최적화 연구)

  • Cho, Kee-Hyeon;Ahn, Ho-Seon;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.9-15
    • /
    • 2011
  • In this study, we investigated the hydrodynamic and thermal performance of constructal architectures on the basis of the mass flow rates for a given pressure drop, and we determined the thermal resistance and flow uniformity. The five flow configuration used in this study were the first construct with optimized hydraulic diameter, the second construct with optimized hydraulic diameter, the first construct with non-optimized hydraulic diameter, second construct with non-optimized hydraulic diameter, and a serpentine configuration. The results of our study suggest that the best fluid-flow structure is the second constructal structure with optimized constructal configurations. We also found that in the case of the optimized structure of cooling plates, the heat transfer was remarkably higher and the pumping power was significantly lower than those of traditional channels.

Breakup Lengths of Circular and Elliptical Liquid Jets in a Crossflow (횡단류 유동 내 원형 및 타원형 액체제트의 분열길이)

  • Song, Yoonho;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.23 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • Breakup lengths of circular and elliptical liquid jets in a subsonic crossflow were experimentally studied. Two circular-shaped and four elliptical-shaped plain-orifice injectors, which had different aspect ratios and orifice length to diameter ratios, were used to provide various liquid jet conditions such as steady, cavitation, and hydraulic flip. By varying the injection pressure drop from 1 bar to 6 bar, spray images were taken using a shadowgraph technique. Breakup lengths were measured and analyzed. As the aspect ratio in orifices increased, liquid column breakup lengths normalized by the equivalent diameter were reduced irrespectively of the switching of the major or minor axis to the crossflow. It was also found that when hydraulic flip developed inside the orifice, x-directional breakup lengths more decreased for both circular and elliptical liquid jets.

EFFECTS OF RIB ARRANGEMENTS AND ROTATION ON HEAT TRANSFER IN A ROTATING TWO-PASS DUCT (회전덕트에서 요철 배열 및 회전수 변화에 따른 열전달 특성)

  • Kim, Kyung-Min;Kim, Yun-Young;Lee, Dong-Ho;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2211-2218
    • /
    • 2003
  • The present study investigates heat/mass transfer characteristics in a rotating two-pass duct for smooth and ribbed surfaces. The duct has an aspect ratio of 0.5 and a hydraulic diameter of 26.67 mm. 70-angled rib turbulators are attached on the leading and trailing sides of the duct in parallel and cross arrangements. The pitch-to-rib height ratio is 7.5 and the rib height-to-hydraulic diameter ratio is 0.075. The Reynolds number based on the hydraulic diameter is constant at 10,000 and the rotation number ranges from 0.0 to 0.2 Detailed local heat/mass transfer coefficients are measured using a naphthalene sublimation technique. The results show that the secondary flows generated by the $180^{\circ}-turn$, rib turbulators, and duct rotation affect the wall heat/mass transfer distribution significantly, As the duct rotates, the rotaion-induced Coriolis force deflects the main flow and results in differences on the heat/mass transfer distribution between the leading and trailing surfaces. Its effects become more dominant as the rotaion number increases. Discussions are presented describing how the rib configuration and the rotaion speed affect the flow patterns and local heat/mass transfer in the duct.

  • PDF

Computer-Aided Optimal Design of Heat Exchangers (컴퓨터에 의한 열교환기 최적설계)

  • Song Tae Ho;Oh Jin Kook;Yoon Chang Hyun;Huh Gyoung Jae
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.10 no.4
    • /
    • pp.297-303
    • /
    • 1981
  • Optimal design of shell and tube heat exchanger system with the working fluids which may condense outside the tubes has been carried out under specified inlet and outlet conditions. Independent variables such as number of parallel series, tube diameter, distribution pitch, tube side pressure loss, baffle cut and shell side pressure loss as well as dependent variables such as shell diameter, number of tubes, number of serial series and number of baffles were all characterized according to the standard. Exhaustive search method was used to construct a computer program together with the calculation of heat transfer rate by LMTD method. stress analysis of maj or parts was made to examine their dimensions satisfying heat transfer and pressure loss requirements. Cost estimation based on the installation, operation and maintenance was also made, A few representative variables, heat transfer area, shell diameter and pressure loss, were used to express cost function, finally giving the optimal selection of all tentative solutions.

  • PDF

COD and BOD Removal of Artificial Municipal Wastewater by a Column filled with Zeolite (제올라이트 칼럼에 의한 인공생활하수의 COD 및 BOD 제거에 관한 연구)

  • Seo, Jeoung-Yoon
    • Journal of Wetlands Research
    • /
    • v.3 no.1
    • /
    • pp.75-89
    • /
    • 2001
  • Constructed wetlands were typically cost less to build and operate, and require less energy than standard mechanical treatment technology but they have similar performance to centralized wastewater treatment plants. Therefore, they were constructed especially many in rural areas, where are small villages but not industries. Accordingly, plantless column tests were performed to investigate the possibility on using zeolite as a filter medium of constructed wetland for the wastewater treatment. $COD_{cr}$ removal efficiency was 94.63% at hydraulic load $314L/m^2{\cdot}d$ and filtering hight 100cm filled with a zeolite mixture. This zeolite mixture consisted of 1 : 1 by volume of a zeolite in the diameter range of 0.5 to 1mm to a zeolite in the diameter range of 1 to 3mm. According, hydraulic load $314L/m^2{\cdot}d$ was considered as optimal. Three zeolite mixture were used to determine the optimal mixing ratio by volume of a zeolite(A) in the diameter range of 0.5 to 1mm to a zeolite(B) in the diameter range of 1 to 3mm diameter. 1 : 3, 1 : 1 and only B in A to B by volume were tested at hydraulic load $314L/m^2{\cdot}d$ and filtering hight 100cm. $COD_{cr}$ removal efficiency was more than 89% at mixing ratios of 1 : 3 and 1 : 1 in A to B. Removal efficiency was lower at the column filled with only B. Removal efficiency was better at filter medium filled with mixing ratio 1 : 1 in A to B than with the other mixing ratios. Thus, it was found that the mixture of mixing ratio 1 : 1 in A to B was appropriate for filter medium of constructed wetland. Removal efficiency was higher in down-flow than in up-flow, and $COD_{cr}$ and BOD were removed best in 20cm filter height near feeding area.

  • PDF

Study on the Prediction of Pressure Drop for Alternative Refrigerants with lubricant in Micro-Fin Tubes (미세휜관내 윤활유를 포함한 대체냉매의 압력강하 예측에 관한 연구)

  • Choi, Jun-Y.;Lee, Jin-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.83-89
    • /
    • 2000
  • This paper presents a pressure drop correlation for evaporation and condensation of alternative refrigerant with oil in micro-fin tubes. The correlation was developed from a data base consisting of oil-free pure and mixed refrigerants in micro-fin tube; Rl25 R134a. R32 R410a(R32/R125 50/50% mass), R22, R407c(R32/R125/R134a, 23/25/52% mass) and R32/R134a(25/75% mass). The micro-fin tube used in this paper had 60 0.2mm high fins with a 18 helix angle. The cross sectional flow area $(A_c)$ was $60.8 mm^2$ giving an equivalent smooth diameter$(D_e)$ of 8.8mm. The hydraulic diameter $(D_h)$ was estimated to the 5.45mm. The new correlation was obtained by replacing the friction factor and the tube-diameter in Bo Pierre correlation by a friction factor derived from pressure drop data for a micro-fin tube and the hydraulic diameter, respectively. This correlation was also used to predict some pressure data with a lubricant after using a mixing viscosity rule of lubricants and refrigerants. As a result, the new correlation was also well predicted to the measured data within a mean deviation of 19.0%.

  • PDF

The Effect of the Diameter and Rotational Velocity on the Cavitation Performance of a Turbopump Inducer (터보펌프 인듀서의 흡입성능에 대한 직경과 회전속도의 영향)

  • Sohn, Dong Kee;Koo, Hyun Chul;Cha, Bong Jun;Yang, Soo Seok;Lee, Dae Sung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.229-234
    • /
    • 2001
  • The turbopump inducer cavitation is very important for the success of a Liquid rocket engine. In this study the performance test and cavitation performance test were carried out at various rotational speed with two different diameter inducers. The rotational speed were varied 4000, 6000, 8000 rpm and the variation to the diameter of an inducer were taken as design size and 2 times enlarged size. The major results of the present study were as follows. 1. The hydraulic performance results showed that the similarity was met over the entire test range of the present study. 2. The blade thickness effect was examined and showed that the increased blade thickness resulted in decreased efficiency and worse cavitation performance for large tip clearance. 3. The cavitation performance test results showed that the breakdown NPSH increases as the flow coefficient and does not affected by the rotational speed.

  • PDF

A Study on Hydraulic Calculation Procedure of Fire Sprinkler System Design (스프링클러설비 설계의 수리계산 절차에 대한 연구)

  • Jeong, Keesin
    • Fire Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.24-32
    • /
    • 2018
  • There are two kinds of method on hydraulic calculation of fire sprinkler system design. The one is using the computational program and the other is designer calculate system for oneself. In case of using the computational program, putting the input data in, the program calculate the friction loss, water flow, total height and so forth. If program user or designer doesn't know the basic idea and procedure of hydraulic calculation. Then, the outputs are different from each other. This paper suggests the hydraulic calculation procedure in design area as follow. Equivalent lengths of tees on the branch are selected base on the same pipe diameter which the tees are established, although the diameter of tee outlet is different. Even though there is a different friction loss of head from the other head, the pressure from the hydraulic end is bigger than a head loss, discharge flow is calculated by pressure from the hydraulic end.

Improvement of the subcooled boiling model for the prediction of the onset of flow instability in an upward rectangular channel

  • Wisudhaputra, Adnan;Seo, Myeong Kwan;Yun, Byong Jo;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1126-1135
    • /
    • 2022
  • The MARS code has been assessed for the prediction of onset of flow instability (OFI) in a vertical channel. For assessment, we built an experiment database that consists of experiments under various geometry and thermal-hydraulic condition. It covers pressure from 0.12 to 1.73 MPa; heat flux from 0.67 to 3.48 MW/m2; inlet sub-cooling from 39 to 166 ℃; hydraulic diameters between 2.37 and 6.45 mm of rectangular channels and pipes. It was shown that the MARS code can predict the OFI mass flux for pipes reasonably well. However, it could not predict the OFI in a rectangular channel well with a mean absolute percentage error of 8.77%. In the cases of rectangular channels, the error tends to depend on the hydraulic diameter. Because the OFI is directly related to the subcooled boiling in a flow channel, we suggest a modified subcooled boiling model for better prediction of OFI in a rectangular channel; the net vapor generation (NVG) model and the modified wall evaporation model were modified so that the effect of hydraulic diameter and heat flux can be accurately considered. The assessment of the modified model shows the prediction of OFI mass flux for rectangular channels is greatly improved.