• Title/Summary/Keyword: Hydraulic unit

Search Result 334, Processing Time 0.042 seconds

An approach of evaluation and mechanism study on the high and steep rock slope in water conservancy project

  • Yang, Meng;Su, Huaizhi;Wen, Zhiping
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.527-535
    • /
    • 2017
  • In this study, an aging deformation statistical model for a unique high and steep rock slope was proposed, and the aging characteristic of the slope deformation was better reflected. The slope displacement was affected by multiple-environmental factors in multiple scales and displayed the same tendency with a rising water level. The statistical model of the high and steep rock including non-aging factors was set up based on previous analyses and the study of the deformation and residual tendency. The rule and importance of the water level factor as a non-aging unit was analyzed. A partitioned statistical model and mutation model were established for the comprehensive cumulative displacement velocity with the monitoring study under multiple factors and multiple parameters. A spatial model was also developed to reflect and predict the whole and sectional deformation character by combining aging, deformation and space coordinates. A neural network model was built to fit and predict the deformation with a high degree of precision by mastering its feature of complexity and randomness. A three-dimensional finite element model of the slope was applied to approach the structure character using numerical simulations. Further, a three-dimensional finite element model of the slope and dam was developed, and the whole deformation state was analyzed. This study is expected to provide a powerful and systematic method to analyze very high, important and dangerous slopes.

Channel Characteristics of Sincheon Experimental Catchment using HEC - RAS model (HEC-RAS 모델을 이용한 신천 시험유역의 하도 특성연구)

  • Park, Byeongky;Lee, Myunggu;Hong, Changsu;Lee, Jaekwan;Lee, Young Joon;Choi, Joongdae
    • Journal of Environmental Science International
    • /
    • v.25 no.1
    • /
    • pp.41-56
    • /
    • 2016
  • In recent localized heavy rainfalls have been arising from abnormal climate change. People are concerning about damages with increasing the frequency of flooding. Therefore, we need to understand river hydraulic characteristics and management to reduce damage from flooding. To study hydraulic characterization of Sincheon experimental catchment HEC-RAS (Hydrologic Engineering Center River Analysis System) model which provided by U.S Army Corps of Engineers (USACE) was applied. This study analyzed and compared water level the frequency flood for 100 years and 200 years by clark unit Hydrography. The change of the water level of Daejeon bridge, Sincheon bridge and Singi bridge showed increased for all conditions. The flow rate for the Daejeon bridge and the Sincheon bridge showed an increase, but the Sinki bridge showed a decreasing flow rate overally, except for 1hour-100 years. The verification result showed that the model was able to simulate the water level with 0.4709 coefficient of determination and error ration ranging from 1 to 3%.

Effect of slag on stabilization of sewage sludge and organic soil

  • Kaya, Zulkuf
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.689-707
    • /
    • 2016
  • Soil stabilization is one of the useful method of ground improvement for soil with low bearing capacity and high settlement and unrequired swelling potential. Generally, the stabilization is carried out by adding some solid materials. The main objective of this research was to investigate the feasibility of stabilization of organic soils and sewage sludge to obtain low cost alternative embankment material by the addition of two different slags. Slags were used as a replacement for weak soil at ratios of 0%, 25%, 50%, 75% and 100%, where sewage sludge and organic soil were blended with slags separately. The maximum dry unit weights and the optimum water contents for all soil mixtures were determined. In order to investigate the influence of the slags on the strength of sewage sludge and organic soil, and to obtain the optimal mix design; compaction tests, the California bearing ratio (CBR) test, unconfined compressive strength (UCS) test, hydraulic conductivity test (HCT) and pH tests were carried out on slag-soil specimens. Unconfined compressive tests were performed on non-cured samples and those cured at 7 days. The test results obtained from untreated specimens were compared to tests results obtained from soil samples treated with slag. Laboratory tests results indicated that blending slags with organic soil or sewage sludge improved the engineering properties of organic or sewage sludge. Therefore, it is concluded that slag can be potentially used as a stabilizer to improve the properties of organic soils and sewage sludge.

Development of the Linear Piston Pump Driven by the Hydraulic Power for the Solid Transferring (고형물 이송을 위한 유압구동 선형 피스톤 펌프의 개발)

  • Kim, Bong-Hwan;Ahn, Kook-Chan;Chung, Sung-Won;Kim, Young-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.82-89
    • /
    • 2009
  • The purpose of this study is to investigate the actual field application of the linear piston pump for the solid transferring driven by the hydraulic power unit. In this paper, the numerical analysis and performance evaluating experiments were performed. CFX program has been used to obtain the solutions for the problems of three-dimensional, turbulent water flow in the linear piston pump. The velocity and the pressure distributions are obtained using the turbulent $k-\varepsilon$ model. To evaluate the performance of the linear piston pump, the performance test stand and data acquisition system were manufactured. The numerical predictions agree favorably with experimental results within 7% error. Speed of the piston which is satisfied the flow rate 3,000l/min which considers from basic design became 0.33m/s. This paper could be applied to the design of the linear piston pump for the fish transferring.

  • PDF

Thinning Effect Due to Bentonite Migration on Performance of GCL (벤토나이트 유실로 인한 협착이 GCL 거동에 미치는 영향)

  • Choi, Hangseok;Lee, Chulho;Stark, Timothy D.
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.4
    • /
    • pp.49-58
    • /
    • 2006
  • Recently, geosynthetic clay liners (GCLs) have increasingly been used to replace compacted clay liners (CCLs) in composite liner systems. Since the introduction of GCLs to waste containment facilities, one of the major concerns about their use has been the hydraulic equivalency to CCLs as required by regulations. Laboratory test results and more recently field observations show that the thickness, or mass per unit area, of hydrated bentonite in a GCL can decrease under normal stress, especially around zones of stress concentration or nonuniform stresses, such as a rock or roughness in the subgrade, a leachate sump, or wrinkles in an overlying geomembrane. This paper presents field case histories that confirm the laboratory observations of bentonite migration and the effect of bentonite migration on hydraulic equivalency and contaminant transport through a GCL.

  • PDF

The Effectiveness of Overflow Improvement of Broad-Crested Side Weirs according to Installing a Hydraulic Structure (보 설치에 따른 광정횡월류위어의 월류량 개선 효과)

  • Kang, Ho Seon;Cho, Hong Je
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.7
    • /
    • pp.523-533
    • /
    • 2015
  • In this study, the effectiveness of overflow improvement of weir was tested by conducting hydraulic experiments at the designated spot for installment of side weir under the condition of installment of hydraulic structures such as small reservoir in mainstream. The height of the reservoir was set up as a third of that of the weir, accordingly the rate of the height of the weir and the distance of the reservoir from the weir($B_h/L_b$) were 0.05, 0.025, 0.0167 each. As a result, overflows per unit width increased by 8.1%, 5.4% and 3.9% perspectively. A new discharge coefficient that adds $B_h/L_b$ as parameter to the existing discharge coefficient of trapezoidal broad crested side weir was suggested and the application of the new formula of discharge coefficient by comparing measured overflow with calculated overflow was identified.

Hydraulic Experiments on Stable Armor Weight and Covering Range of Round Head of Rubble-Mound Breakwater Armored with Tetrapods: Non-breaking conditions (경사식방파제 제두부에 거치된 Tetrapod의 안정중량 및 피복범위에 관한 수리실험: 비쇄파 조건)

  • Kim, Young-Taek;Lee, Jong-In
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.389-398
    • /
    • 2017
  • The re-analysis on the stable weight of the concrete armor unit (CAU) at the roundhead and the suggestion of the covering range at the roundhead with the increased weight of CAU were conducted. Tetrapods were applied to the tests and the three dimensional hydraulic tests were performed. The test results for the stable weight at the roundhead area were similar to the guides from Korean Design Standard for Harbour and Fishery Port (MOF, 2014) and Coastal Engineering Manual (USACE, 2005). The investigation of covering range at the roundhead of rubble mound structures armoured with Tetrapods was suggested that the length of five times of the design wave height from the tip of the superstructure was needed and appropriate. Both sides of the superstructure should be covered with increasing weighted CAU to satisfy the stability at roundhead area.

Operational Characteristics of the Anaerobic Sequencing Batch Reactor Process at a Thermophilic Temperature (연속 회분식 고온 혐기성 공정의 운전특성 연구)

  • Lee, Jong Hoon;Chung, Tai Hak;Chang, Duk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.1
    • /
    • pp.33-41
    • /
    • 1997
  • An attempt was made to enhance anaerobic treatment efficiency by adopting the anaerobic sequencing batch reactor(ASBR) process at a thermophilic temperature. Operational characteristics of the ASBR process were studied using laboratory scale reactors and concentrated organic wastewater composed of soluble starch and essential nutrients. Effects of fill to react ratio (F/R) were examined in the Phase I experiment, where the equivalent hydraulic retention time(HRT) was maintained at 5 days with the influent COD of 10g/L. A continuous stirred tank reactor(CSTR) was operated in parallel as a reference. Treatment efficiency was higher for the ASBRs because of continuous accumulation of volatile suspended solids(VSS) compared to the CSTR. However, the rate of gas production and organic removal per unit VSS in the ASBRs was much lower than the CSTR. This was caused by reduced methane fermentation due to accumulation of volatile acids(VA), especially for the case of low F/R, during the fill period. When the F/R was high, maximum VA was low and the VA decreased in short period. Consequently, more stable operation was possible with higher F/R. Effects of hydraulic loading rate on the efficiency was studied in the Phase II experiment, where the organic loading rate was elevated to 3333mg/L-d with the F/R of 0.12. Reduction of organic removal along with rapid increase of VA was observed and the stability of reaction was seriously impaired, when the influent COD was doubled. However, operation of the ASBR was quite stable, when the hydraulic loading rate was doubled and a cycle time was adjusted to 12 hour. It is essential to avoid rapid accumulation of VA during the fill period in order to maintain operational stability of the ASBR.

  • PDF

Experimental studies on stabilization techniques for ground over abandoned subsurface excavations

  • Pal Samir K.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.142-149
    • /
    • 2003
  • Blind hydraulic backfilling is a commonly used technique for subsidence control of the strata over unapproachable waterlogged underground excavations. In this investigation model studies on all the three variants of this technique, namely, hydro-pneumatic or air-assisted gravity backfilling, pumped-slurry backfilling and simple gravity backfilling, have been carried out in fully transparent models of the underground excavations. On examination of the filling process, it was revealed that in all the three cases, the basic process of filling occurs by sand transport along one or more meandering channels. The relative influence of sand, water and air flow rates on the area of filling from a single inlet point and the hydraulic pressure loss per unit length were studied in details. In hydro-pneumatic backfilling process, the air bubbles while moving upward through the meandering channels provide an additional buoyant force over and above the available hydraulic head. In this way the area of filling from a single borehole may be quite large even at small flow rates of water. During actual field implementation the injected air, if not released completely from the rise side holes, may cause troubles by way of creating potholes on the surface. The pumped-slurry technique has shown its capability of filling a relatively larger area at faster rate, especially when high-volume, low-pressure method was selected. But simple gravity filling was also found to be equally effective method as slurry pumping, especially when flow rates were high. In the second and third method discussed above, examination of variations of injection pressure was also done and its relation with physical phenomenon was also attempted. Some empirical relationships were also developed using multivariate regression with a view to help the practicing engineers.

  • PDF

Design of a 50kW Class Rotating Body Type Highly Efficient Wave Energy Converter (50kW급 가동물체형 고효율 파력발전시스템 설계)

  • Cho, Byung-Hak;Yang, Dong-Soon;Park, Shin-Yeol;Choi, Kyung-Shik;Park, Byung-Chul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.552-558
    • /
    • 2011
  • A 50 kW class rotating body type wave energy converter consisted of two floating bodies and a PTO (Power Takeoff) unit is studied. As an wave energy extractor, the body is designed to have a VLCO (Variable Liquid-Column Oscillator) having a liquid filled U-tube with air chambers. Owing to the oscillation of the liquid in the U-tube caused by the air spring effect of the air chambers, the amplitude of response of the VLCO becomes significantly amplified for a target wave period. The PTO converts the rotational moment introduced from the relative motion of the hinged bodies to an hydraulic power by means of a cylinder. A high pressure accumulator, hydraulic motor and a generator are equipped in the PTO to convert the hydraulic power to electric power. A control law for adjusting the oscillation period of the VLCO is proposed for the efficient operation of the VLCO with various wave conditions. It is found that the effect of the air spring has an important role to play in making the oscillation of the VLCO match with the ocean wave. In this way, the wave energy converter equipped with the VLCO provides the most effective mode for extracting energy from the ocean wave.