• Title/Summary/Keyword: Hydraulic unit

Search Result 334, Processing Time 0.03 seconds

Design Parameter Optimization of Rope Brake System far Elevator (엘리베이터용 로프 브레이크 시스템의 설계변수 최적화에 관한 연구)

  • 윤영환;최명진
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.85-94
    • /
    • 2001
  • Hydraulic systems of rope brake for elevators are modelled to evaluate design parameters such as cylinder pressure, pis-ton displacement, accumulator capacity, and so on. To assure the results, experiments were performed. The analysis results agree well with the experimental results. The scheme in this study is expected to be utilized in the design of rope brake system for elevators to get design parameters and to improve the safety.

  • PDF

Co-Simulation Technology Development with Electric Power Steering System and Full Vehicle (전동 조향 장치와 차량의 동시 시뮬레이션 기술 개발)

  • 장봉춘;소상균
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.94-100
    • /
    • 2004
  • Most power steering systems obtain the power by a hydraulic mechanism. Therefore, it consumes more energy because the oil power should be sustained all the times. Recently, to solve this problem the electric power system has been developed and become widely equipped in passenger vehicles. In this research the simulation integration technique for an electric power steering system with MATLAB/SIMULINK and a full vehicle model with ADAMS has been developed. A full vehicle model interacted with electronic control unit algorithm is concurrently simulated with an impulsive steering wheel torque input. The dynamic responses of vehicle chassis and steering system are evaluated. This integrated method allows engineers to reduce the prototype testing cost and to shorten the developing period.

Process -dynamic Model for Stock-fluid in a Pressurized Paper Machine Headbox (초지기 가압-헤드박스 내 지료유체의 공정-동특성모델)

  • 윤성훈
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.3
    • /
    • pp.35-46
    • /
    • 1999
  • Mathematical modeling provided a systematic analysis for the dynamic behavior of stock fluid in a paper machine pressurized headbox. Dynamic responses of liquid level, sheet basis weight and hydraulic pressure were predicted from the simulation model which represents the system. A unit step and asinusoidal wave load were considered as the input forcing functions in the headbox. Results are summarized as follows : 1. The dependence of sheet basis weight on liquid level in the pressurized-headbox was non -linear. 2. Liquid level in the head-box showed first-order lag with a unit step forcing to fluid input rate ; 3 . The amplitude of wave response of liquid level was inversely proportional to the time content for the sinusoidal input changes ; 4.Sheet basis weight showed second-order oscillating underamped responses for the step input load of flow rate ; 5. The damping factor in the second-order system was a function of air-pressure in the headbox ; and, 6. Dead-time existed in the measuring process for the headbox slice pressure.

  • PDF

Treatment of Starch Wastewater by Anaerobic Digestion Combined with Hollow Fiber UF

  • No, Seong-Hui;Na, Jae-Un;Kim, Seon-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.745-748
    • /
    • 2000
  • Anaerobic digester coupled with hollow fiber membrane unit. Treatment of starch waste with anaerobic digester-membrane system was studied. $0.17\;m^2$ area of hollow fiber membrane unit of known pore size was immersed into laboratory-scale anaerobic digestion system. The gas production was about $0.74\;m^3/kg$ COD treated. The COD removal efficient was about 80-95% depending on the hydraulic retention time. Crossflow ultrafiltration as Post treatment to anaerobic filter. The study conducted with different membrane pore size indicated that membrane with 1,000,000 molecular weight cut-off size gave a higher COD removal efficiency in the range of 83-87% while giving a study flux of $120-130\;L/m^2\;{\cdot}\;h$. A study was conducted to see the long term clogging effect of membrane also.

  • PDF

Flotation Characteristics of Activated Sludge by Micro-bubbles (미세 기포에 의한 활성슬러지의 부상특성)

  • Kim, Seong-Jin;Kang, Byoung-Jun;Park, Sang-Wook;Lee, Jae-Wook;Jung, Heung-Joe;Kwak, Dong-Heui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.501-507
    • /
    • 2006
  • Dissolved air flotation (DAF) has been well known for the gravity separation process. The solids to be separated are transferred from the water body to the water surface using micro-air bubbles. DAF has also been used for enhancing solids-liquid separation of industrial and municipal wastewater by adding a its unit parallel to a sedimentation unit to reduce the hydraulic loading in the sedimentation clarifier. This study was to investigate flotation characteristics of activated sludge by the recent DAF technique without chemical agents. In addition, the effect on temperature in flotation of activated sludge and the thickening degree of activated sludge were studied.

Ecophysiological Interpretations on the Water Relations Parameters of Trees(VIII) - The Hydraulic Architecture of Quercus mongolica (수목(樹木)의 수분특성(水分特性)에 관(關)한 생리(生理)·생태학적(生態學的) 해석(解析)(VIII) - 신갈나무의 수분통도성(水分通導性) 구조(構造) -)

  • Han, Sang Sup;Kim, Sun Hee
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.1
    • /
    • pp.120-129
    • /
    • 1996
  • This study was carried out to investigate the hydraulic architecture such as relative hydraulic conductivity, Leaf specific conductivity(LSC), Huber value, Specific conductivity of the stem, branch and Junctions of stem-to-branch in Quercus mongolica trees. The hydraulic architecture of various hydraulic conductivities of stem and branch was described. The results obtained were summarized as follows : 1. The range of relative hydraulic conductivity was $2.5526{\times}10^{-12}$ to $1.2260{\times}10^{-10}m^2$ in stems, $1.6279{\times}10^{-11}$ to $6.8378{\times}10^{-11}m^2$ in branches. The relative hydraulic conductivities increased with decreasing diameter of stem and branch. The relative hydraulic conductivity of one-year-old terminal shoots were two times greater than that of the lateral shoots. 2. LSC value was larger at the top than at the base in stem. LSC is much smaller in branches than in stem ; especially smallest at branching part. 3. Hydraulic conductivities of the branching part appeared the different values with the 4 type and 4 type. Relative hydraulic conductivity, LSC, Specific conductivity and mean vessel diameter in type branching part were larger in stem than in branch part, but not found in the branching part of Y type. 4. LSC and Specific conductivity of stem increased with decreasing diameter, but Huber value slowly increased with decreasing diameter ; especially highest at less than 1cm diameter. 5. LSC, Huber value, and mean diameter of vessels were larger at 1-year-old leader shoots than at lateral shoots. 6. The mean vessel diameter in various parts of a tree decreased with decreasing diameter of stem, but the number of vessels per unit area($mm^{-2}$) increased reversely. Mean vessel diameter in stem decreased sharply at earlywood and slowly at latewood with decreasing diameter of stem.

  • PDF

Development of Brake System with ABS Function for Aircraft

  • Jeon, Jeong-Woo;Woo, Gui-Aee;Lee, Ki-Chang;Kim, Yong-Joo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.423-427
    • /
    • 2003
  • In this paper, it is to development of brake system with ABS function for aircraft. The test of brake system is required before applying on aircraft. The real-time dynamic simulator with 5-D.O.F. aircraft dynamic model is developed for braking performance test of ABS (Anti-skid Brake System) control h/w with anti-skid brake functions. The dynamic simulator is real-time interface system that is composed of dynamic simulation parts, master control parts, digital and analog in/out interface parts, and user interface parts. The 5-D.O.F. aircraft dynamic model is composed of a big contour and a little contour by simulation s/w. The big contour represents the interactions of forces in airframe, nose and main landing gear, and engines on the center of gravity. The little contour represents interactions of wheel, braking units, hydraulic units and a control unit. ABS control h/w unit with ABS control algorithm is also developed and is tested with simulator under the some conditions of gripping coefficient. We have known that ABS control h/w unit on wet or snowy runway as well as dry runway very well protects wheel skid.

  • PDF

Molding Stability of Hydro-Mechanical High Speed Injection Molding for Thin-Wall(0.3mm) LGP (박판(0.3mm) 도광판 성형을 위한 유압식 고속사출성형의 성형 안정성 연구)

  • Hwang, C.J.;Kim, J.S.;Oh, J.G.;Jeong, C.;An, H.J.;Heo, Y.M.;Kim, J.D.;Yoon, K.H.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.657-661
    • /
    • 2008
  • Recently, products of electronic industry and related parts are required to have the thickness thinner and thinner to reduce the part weight. To go with this trend, LGP(light guide plate) of LCD-BLU(Liquid Crystal Display-Back Light Unit: It is one of kernel parts of LCD) for cell phone has the thickness of ${\sim}0.3mm$ and the battery case of cell phone has ${\sim}0.25mm$. Accordingly, high speed injection molding is required to mold products which have thinner parts. To achieve high speed injection and proper control of hydraulic unit, various design was applied to conventional injection unit. In the present paper, we concentrated on the molding stability of hydro-mechanical high speed injection machine to make an LGP of 0.3mm thickness.

Introduction of Vibration Evaluation for APR 1400 Reactor Coolant Pump Shaft (APR 1400급 원자로냉각재펌프의 회전체 진동평가에 관한 고찰)

  • Kim, Ik Joong;Lim, Do Hyun;Kim, Min Chul;Bang, Sang Youn
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.110-115
    • /
    • 2014
  • The nuclear power plant was launched by Kori unit 1 in 1978 years. Currently, 23 nuclear power plants have been operating in Korea since 1978 years. The localization was completed for most of the reactor facility from Hanbit(Youngkwang) unit 3&4. However, RCP(Reactor Coolant Pump) and MMIS(Man Machine Interface System) is an important technology that has been excluded from the scope of the technical transfer has been dependent on a specific overseas vendor. Recent success in RCP development through co-operation with government and industries. Developed RCP will be applied to Shin-Hanul unit 1&2 nuclear power plants. The RCP operates in high speed and high pressure condition and only rotating component in the NSSS(Nuclear Steam Supply System). Therefore, the problem of vibration has arisen caused by the hydraulic forces of the working fluid. These forces can influence on the stability characteristics for entire RCS(Reactor Coolant System) loop, and can act as significant destabilizing forces. In this study, vibration evaluation of the pump shaft of development RCP estimated under normal operation and over speed conditions. In order to predict the vibration characteristics and dynamic behavior, modal analysis, critical speed analysis and unbalance response spectrum analysis were performed.

  • PDF

Reliability-based Design Method of Concrete Armour Units with Structural Stability (구조적 안정성을 고려한 콘크리트 피복재의 신뢰성 설계)

  • Lee Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.3
    • /
    • pp.142-151
    • /
    • 2004
  • A method for the determination of concrete armor unit weights with hydraulic stability and structural stability may be formulated in this paper. The hydraulic stability is analyzed by using Hudson's formula, the structural stability is also studied by evaluation of maximum flexural tensile stresses in armor unit induced by the impact loads and by comparison of those with the tensile resistance strength directly. The applicable criteria for concrete armor units can be represented as a function of design wave heights with return period, armor weights, and tensile strengths for the practical uses. In addition, reliability analyses for two failure modes are carried out to take into account some uncertainties. Finally, a series system for two-failure mode analysis can be made up straightforwardly, by which the optimal weights of armor units can be estimated with the various relative breakages, given the specific target probability of failure under the concepts of reliability-based design method.