• 제목/요약/키워드: Hydraulic transport

검색결과 286건 처리시간 0.359초

준설시험루프를 이용한 모래-물 혼합물 배송에 관한 연구 (Study of Hydraulic Transport of Sand-water Mixture by a Dredging Test Loop)

  • 이만수;박영호;이영남;정충기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1504-1511
    • /
    • 2005
  • The efficiency of the hydraulic transport of soil-water mixtures is an important factor in designing and operating a pump & pipeline system and is directly connected with dredging cost and working period. However, the hydraulic transport mechanism in the slurry flow inside the pipeline such as frictional losses, specific energy consumption, deposition velocity has not been well established. In this study a new dredging test loop system was designed and built. It is composed of a slurry pipeline with pipes of different diameters, a centrifugal slurry pump and a diesel engine connected with the slurry pump. and equipped with modern measuring facilities that enable to measure all important characteristics of a transportation system. The objective of this paper is to discuss the efficiency of the hydraulic transport of the Jumoonjin sand-water mixtures in the dredging test loop and to present simple equations induced from the test results of the loop that can express the transport product and the transport productivity.

  • PDF

퇴적토 배출을 수반한 연직수문의 수리특성에 관한 실험적 연구 (An Experimental Study for the Hydraulic Characteristics of Vertical lift Gates with Sediment Transport)

  • 최승제;이지행;최흥식
    • Ecology and Resilient Infrastructure
    • /
    • 제5권4호
    • /
    • pp.246-256
    • /
    • 2018
  • 하단배출 형태의 연직수문에서의 퇴적토사 이동을 수반한 유량계수, 수력도약 높이, 수력도약 길이의 수리특성을 분석하기 위해 수리 모형실험과 차원해석을 수행하였다. Froude 수와 수리특성의 상관관계를 퇴적토 이동 유무에 따라 도식화하고, 무차원 매개변수와 수리특성의 상관성을 분석하고 다중회귀분석식을 개발하였다. 퇴사의 이동을 수반한 수리특성은 퇴적토의 이동이 없을 경우와는 다른 양상을 확인하여 퇴적토 이동을 특성을 나타낼 수 있는 변수의 도입이 필요함을 확인하였다. 유량계수, 수력도약 높이와 수력도약 길이에 대한 각 다중회귀분석식의 결정계수는 유량계수 0.749, 수력도약 높이 0.896, 수력도약 길이 0.955로 높게 나타났다. 개발한 수리특성식의 적용성을 평가하기 위해 실제 측정값과 회귀분석식에 의해 계산된 값의 95%의 예측구간 분석을 수행하였고, 유량계수, 수력도약 높이와 길이에 대한 예측의 정확도 분석차원의 NSE (Nash-Sutcliffe Efficiency), RMSE (root mean square)와 MAPE (mean absolute percentage error)는 적절한 것으로 판단되었다.

수직한 수송관 내부의 캡슐 이송 (Transport of a capsule immersed in a vertical pipe)

  • 김태홍;박렬;정준호;김원정
    • 한국가시화정보학회지
    • /
    • 제17권1호
    • /
    • pp.19-25
    • /
    • 2019
  • We report a study on the dynamics of the transport of a capsule immersed in a vertical pipe. Techniques to convey objects through liquid flow pipes using a hydraulic mean are used to transport sludge and hazardous materials. For the better understanding of the techniques, we developed a theoretical model to predict the transport speed of a cylindrical capsule in a vertical pipe. The comparison of the model prediction with the experiments shows that our model using the lubrication approximation precisely describes the experimental observations in cases where the gap between the capsule and pipe wall is sufficiently small. Our study suggests parameters to control the falling speed and thus enable an accurate control of the capsule speed in hydraulic transport systems.

비균질성을 고려한 해성점토매립장의 수리전도도 추정과 오염이동특성 (Prediction of Heterogeneous Hydraulic Conductivity and Contaminant Transport for the Landfill on Marine Clay)

  • 장연수;정상용
    • 한국지반공학회지:지반
    • /
    • 제13권1호
    • /
    • pp.85-100
    • /
    • 1997
  • 지구 통계학적 방법을 이용하여 수도권 쓰레기 매립지 수리전도도의 비균질성에 대하여 분석하고 오염 이동해석을 실시하였다. 수리전도도는 가압 실내투수시험 자료와 현장 투수시험 자료를 이용하였고 지구통계학적 방법으로는 일반크리깅과 조건부 시뮬레이션 방법을 이용하였다. 그 결과 조건부 시뮬레이션에 의한 수리전도도의 비균질성이 일반크리깅에 의한 것보다 크게 나타났으며 비균질성이 큰 조건부 시뮬레이션에 의하여 구해진 수리전도도 상의 오염물이동성이 일반크리깅에 의하여 구해진 수리전도도 상의 이동 결과 보다 큰 것으로 나타났다.

  • PDF

Changes in plant hydraulic conductivity in response to water deficit

  • Kim, Yangmin X.;Sung, Jwakyung;Lee, Yejin;Lee, Seulbi;Lee, Deogbae
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.35-35
    • /
    • 2017
  • How do plants take up water from soils especially when water is scarce in soils? Plants have a strategy to respond to water deficit to manage water necessary for their survival and growth. Plants regulate water transport inside them. Water flows inside the plant via (i) apoplastic pathway including xylem vessel and cell wall and (ii) cell-to-cell pathway including water channels sitting in cell membrane (aquaporins). Water transport across the root and leaf is explained by a composite transport model including those pathways. Modification of the components in those pathways to change their hydraulic conductivity can regulate water uptake and management. Apoplastic barrier is modified by producing Casparian band and suberin lamellae. These structures contain suberin known to be hydrophobic. Barley roots with more suberin content from the apoplast showed lower root hydraulic conductivity. Root hydraulic conductivity was measured by a root pressure probe. Plant root builds apoplastic barrier to prevent water loss into dry soil. Water transport in plant is also regulated in the cell-to-cell pathway via aquaporin, which has received a great attention after its discovery in early 1990s. Aquaporins in plants are known to open or close to regulate water transport in response to biotic and/or abiotic stresses including water deficit. Aquaporins in a corn leaf were opened by illumination in the beginning, however, closed in response to the following leaf water potential decrease. The evidence was provided by cell hydraulic conductivity measurement using a cell pressure probe. Changing the hydraulic conductivity of plant organ such as root and leaf has an impact not only on the speed of water transport across the plant but also on the water potential inside the plant, which means plant water uptake pattern from soil could be differentiated. This was demonstrated by a computer simulation with 3-D root structure having root hydraulic conductivity information and soil. The model study indicated that the root hydraulic conductivity plays an important role to determine the water uptake from soil with suboptimal water, although soil hydraulic conductivity also interplayed.

  • PDF

지진해일에 의한 토사이동 해석을 위한 수리모형장치 제작 및 적용성 평가 (Construction and Application of the Hydraulic Scale Model for the Analysis of Sediment Transport by Tsumani)

  • 염민교;이백근;민병일;이정렬;서경석
    • 방사선산업학회지
    • /
    • 제7권2_3호
    • /
    • pp.201-207
    • /
    • 2013
  • Soil liquefaction by tsunami or wave induced currents can cause serious damages to coastlines and coastal infrastructures. Although liquefaction caused by regular waves over sea beds has been extensively investigated, studies of tsunami-induced liquefaction near coastal area have been relatively rare. In this work, the hydraulic scale model has been designed and constructed to investigate the variations of wave height and sediment transport by tsunami. The distorted hydraulic scale model based on the Froude similarity was adopted to represent hydrodynamics and sediment transport in a coastal area. The scale model was composed of control box, screw axis, wave paddle and rotating coastal structure.

Recent Advances in Sedimentation and River Mechanics

  • Pierre Julien
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2002년도 학술발표회 논문집(I)
    • /
    • pp.3-16
    • /
    • 2002
  • This article describes some of the recent and on-going research developments of the author at Colorado State University. Advances in the field of sedimentation and river mechanics include basic research and computer modeling on several topics. Only a few selected topics are considered here: (1) analytical determination of velocity profiles, shear stress and sediment concentration profiles in smooth open channels; (2) experiments on bedload particle velocity in smooth and rough channels; (3) field measurements of sediment transport by size fractions in curved flumes. In terms of computer modeling, significant advances have been achieved in: (1) flashflood simulation with raster-based GIOS and radar precipitation data; and (2) physically-based computer modeling of sediment transport at the watershed scale with CASC2D-SED. Field applications, measurements and analysis of hydraulic geometry and sediment transport has been applied to: (1) gravel-bed transport measurements in a cobble-bed stream at Little Granite Creek, Wyoming; (2) sand and gravel transport by size fraction in the sharp meander bends of Fall River, Colorado; (3) changes in sand dune geometry and resistance to flow during major floods of the Rhine River in the Netherlands; (4) changes in hydraulic geometry of the Rio Grande downstream of Cochiti Dam, New Mexico; and (5) analysis of the influence of water temperature and the Coriolis force on flow velocity and sediment transport of the Lower Mississippi River in Louisiana. Recent developments also include two textbooks on "Erosion and Sedimentation" and "River Mechanics" by the author and state-of-the-art papers in the ASCE Journal of Hydraulic Engineering.

  • PDF

조파역내 오염물 이동특성 평가 실험 (Experiments for the Characteristic Evaluation of Pollutant Transport in Tidal Influenced Region)

  • 박건형;김기철;정성희;서경석
    • 방사선산업학회지
    • /
    • 제4권4호
    • /
    • pp.391-395
    • /
    • 2010
  • The characteristics for pollutant transport in tidal influenced area was investigated using tidal wave hydraulic scale model. Hydraulic scale model was composed of the tidal generator, attenuation area and channel. Also, wave height, current meter and conductivity meter were used with the measured instruments in hydraulic scale model. NaCl with a tracer was used to evaluate the advection phenomena under the different velocity profiles. The arrival time of the maximum concentration in the condition of the relatively fast velocity was measured about 30 seconds faster than ones in the conditions of low velocity. The measured concentrations of the tracer were shown in the detection points of the flow direction consecutively.