• Title/Summary/Keyword: Hydraulic transient

Search Result 277, Processing Time 0.027 seconds

Numerical prediction of transient hydraulic loads acting on PWR steam generator tubes and supports during blowdown following a feedwater line break

  • Jo, Jong Chull;Jeong, Jae Jun;Yun, Byong Jo;Kim, Jongkap
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.322-336
    • /
    • 2021
  • This paper presents a numerical prediction of the transient hydraulic loads acting on the tubes and external supports of a pressurized water reactor (PWR) steam generator (SG) during blowdown following a sudden feedwater line break (FWLB). A simplified SG model was used to easily demonstrate the prediction. The blowdown discharge flow was treated as a flashing flow to realistically simulate the transient flow fields inside the SG and the connected broken feedwater pipe. The effects of the SG initial pressure or the broken feedwater pipe length on the intensities or magnitudes of transient hydraulic loads were investigated. Then predictions of the decompression pressure wave-induced impulsive pressure differential loads on SG tubes and the transient blowdown loads on SG external supports were demonstrated and the general aspects of transient responses of such transient hydraulic loads to the FWLB were discussed.

A method for the determination of transient flow rates from pressure measurements (압력측정을 이용한 과도기유량의 결정방법에 관한 연구)

  • 이성래
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.724-729
    • /
    • 1992
  • A transient hydraulic flow rate computation scheme is described here so that the transient hydraulic flow rate can be determined using the dynamic pressure measurements at the ends of a straight flowline with a dynamic, model of the hydraulic line. Simulation results indicate that the method is relatively robust to realistic levels of uncertainties in the fluid properties.

  • PDF

A Characteristics of Transient fluid flow in a Hydraulic circular pipe (유압(油壓) 관로(管路) 내(內)에서 유체(流體) 유동(流動)의 과도응답특성(過渡應答特性)에 관(關)한 이론적연구(理論的硏究))

  • Kim, H.J.;Jung, J.C.;Yoo, Y.T.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.829-834
    • /
    • 2000
  • This paper is primarily directed toward analyzing the transient response characteristics in hydraulic pipe lines. The exact solution to the transient response characteristics was obtained by using the complicated transfer function derived by Iberall. The discrepancy with the exact and approximate is small, so the approximate solution is adopted to the theoretical one. An equation was derived which describes the pressure times relationship Hat occurs at the end of volume terminated transmission line following a sudden pressure change at its inputs. As a result, It is found that the density has relationship about the Wave Propagation is very useful in analyzing the transient response characteristics of hydraulic pipe lines. The velocity of Pressure wave Propagation decreases as the density of fluid increased.

  • PDF

A method for the determination of transient flow rates from pressure measurements (압력측정을 이용한 과도기유량의 결정방법에 관한 연구)

  • Lee, Seong-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3649-3654
    • /
    • 1996
  • A transient hydraulic flow rate computation scheme is described here so that the transient hydraulic flow rate can be determined using the dynamic pressure measurements at the ends of a straight flow line with a dynamic model of the hydraulic line. This method can be applied to determine the orifice ares of high response valve. Simulation results indicate that the method is relatively robust to realistic levels of uncertainties in the fluid properties.

Case study on Remodeling Clearwell Hydraulic Structure using Transient CFD Simulation Technique (Transient CFD 모사기법을 이용한 정수지 최적설계 사례연구)

  • Kim, Seon-Jin;Kim, Seong-Su;Park, No-Suk;Cha, Min-Whan;Wang, Chang-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.425-432
    • /
    • 2010
  • From the results of tracer test for the existing clearwell in Y water treatment plant, $T_{10}$ and T10/T were calculated as 150 min and 0.24, respectively. Therefore it required the modification schemes for improving hydraulic efficiency, surrogated by $T_{10}$ and $T_{10}$/T, and disinfection performance. In this study, using transient CFD(Computational Fluid Dynamics) simulation technique, tracer tests on dynamic condition for the suggested schemes were simulated. From the results of simulation, it was revealed that 8~6 baffles are necessary to guarantee the disinfection ability in the existing clearwell. Also, installing orifice baffle in the vicinity of inlet could increase plug flow fraction within clearwell.

Improvement of transient response characteristics of hydraulic servo system for position control by reduced-order observer (縮小次數 觀測器에 의한 位置制御 油壓 서어보시스템의 過度應答特性 改善)

  • 이경수;이교일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.1036-1043
    • /
    • 1987
  • The objective of this paper is to improve the transient response characteristics of hydraulic servosystem via a reduced-order observer which is modelled based upon the nonlinear hydraulic servosystem. The observer is a second order linear model and implemented using a 8 bit micro-computer. The performance of the observer-based hydraulic servosystem was investigated through the hybrid computer simulations and experiments. The result shows that the reduced-order observer can effectively improve the transient response characteristics of hydraulic servosystem.

Transient Characteristic Analysis on the Regenerative Braking System of Fuel-cell Electric Vehicle with Electro-Hydraulic Brake (전기유압식 브레이크를 장착한 연료전지차량의 회생제동 천이구간 특성해석)

  • Choi, Jeong-Hun;Cho, Bae-Kyoon;Park, Jin-Hyun;Hwang, Sung-Ho
    • Journal of Drive and Control
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Nowadays, various researches about eco-friendly vehicles such as hybrid electric vehicle, fuel cell vehicle and electric vehicle have been actively carried out. Since most of these green cars have electric motors, the regenerative energy technology can be used to improve the fuel economy and the energy efficiency of vehicles. The regenerative brake is an energy recovery mechanism which slows a vehicle by converting its kinetic energy into electric energy, which can be either used immediately or stored until needed. This technology plays a significant role in achieving the high energy usage. However, there are some technical problems for controlling the regenerative braking and the electro-hydraulic brake during switching at transient region. In this paper, the performance simulator for fuel-cell vehicle is developed and transient response characteristics of the regenerative braking system are analyzed in the various driving situations. And the hardware-in-the-loop simulation of electro-hydraulic brake is performed to validate the transient characteristics of the regenerative braking system for fuel-cell electric vehicle.

Examining the effects of wall roughness on the hydraulic characteristics of chlorine contactor using Transient CFD Simulation Technique (벽면 조도계수가 염소 접촉조 수리특성에 미치는 영향 연구)

  • Chae, Seon-Ha;Lim, Young-Taek;Cha, Min-Whan;Kim, Jong-Oh
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.759-765
    • /
    • 2011
  • In this study, in order to investigate the effects of wall roughness on the hydraulic characteristics of chlorine contactor, CFD simulation and tracer tests were conducted for both of reactors whose walls are made of concrete and lined with PE(Poly Ethylene). In the case of walls contacted with water being lined with PE (relatively lower roughness), the flow within reactor is closer to plug flow than that in the case of concrete walls (relatively higher roughness). Especially, the longer tail of C-curve from the results of transient CFD simulation can tell that Morill index in the case concrete walls is much higher than that in the case of walls be lined with lower roughness material.

Analysis of Transient Response of an Engine to Throttle Tip-in/Tip-out (차량 감/가속시의 엔진의 동적 응답 해석)

  • 고강호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.122-128
    • /
    • 2002
  • In this paper dynamic responses of an engine, which is supported by hydraulic mount, to throttle tip-in/Tip out are analyzed. Because the hydraulic mounts have non-linearity that the characteristics of stiffness and damping vary with frequencies, it is difficult to analyze the dynamic behavior of an engine using general integral algorithms. Convolution integral and relationship between unit impulse response functions and frequency response functions are therefore used to simulate the transient behaviors of an engine indirectly. In time domain, impulse response functions are calculated by two-side discrete inverse courier transform of frequency response function achieved by laplace transform of equations of motion. Considering the fact that the shapes of behavior of an engine simulated by the proposed method are in good agreement with test results, it is confirmed that the proposed method is very effective for the analysis of transient response to throttle tip-in/out of an engine with hydraulic mounts.

Back Analysis of Unsaturated Hydraulic Conductivities for Transient Water Release and Imbibitions Measurement (부정류 유출 및 흡입시험에 대한 불포화 투수계수의 역해석)

  • Oh, Seboong;Kim, Do-Hyung;Song, Young-Sug
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.3
    • /
    • pp.5-12
    • /
    • 2018
  • Tests for transient water release and imbibitions measurement were conducted to estimate the unsaturated hydraulic conductivities by using back analysis. By using transient hydraulic characteristics, both the soil water retention curve and hydraulic conductivity fuction can be evaluated effectively and accurately. In this study the experiment for three samples were conducted accurately to measure the change of water content with time for various steps of matric suction. The back analysis calculated the amount of transient flow reliably in comparison with the experimental results. In the soil water retention curve there was no significant difference between the result of back analysis and that of experiment. The hydraulic conductivity function from back analysis was compared with the theoretical relation based on retention curve but they showed much difference. However, the unsaturated hydraulic behavior obtained by the combination of experimental and analytical techniques are considered to agree with the actual behavior.