• Title/Summary/Keyword: Hydraulic structure

Search Result 820, Processing Time 0.033 seconds

Construction Monitoring of Geotextile Tube at Young-Jin Bay and Stability Analysis by Hydraulic Model Tests (영진만 지오텍스타일 튜브의 현장 시공계측 및 수리모형시험을 통한 안정성분석)

  • 신은철;오영인;이명호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.549-556
    • /
    • 2002
  • Geotextile tubes hydraulically or mechanically filled with dredged materials have been applied in hydraulic and coastal engineering in recent years(shore protection structure, detached breakwater, groins and jetty). It can also be used to isolate contaminated material from harbor, detention basin dredging, and to use this unit as dikes for reclamation work. Recently, new preliminary design criteria supported by model and prototype tests, and some stability analysis calculations have been studied. The stability analysis of geotextile tube is composed geotechnical and hydrodynamic analysis. The stability check points are sliding failure, overturning, bearing capacity failure against the wave attack. In this paper presented the construction procedure and in-situ measurement(properties of filling material, effective height variation, stress variation at geotextile tube bottom) of geotextile tube at Young-Jin Bay and stability analysis by theoretical method and hydraulic model tests

  • PDF

Review on the chemicals used for hydraulic fracturing during shale gas recovery (쉐일가스 생산을 위한 수압파쇄에 사용되는 화학물질)

  • Kang, Byoung-Un;Oh, Kyeong-Seok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.517-524
    • /
    • 2014
  • Two key technologies of horizontal drilling and hydraulic fracturing are recognized to achieve the rapid growth of shale gas production, in specific, in the United States during last decade. The claims between environmentalists and oil companies have been debating in terms of water contamination. Nowadays, voluntary publication of chemicals from shale gas players are available in the website, FracFocus. This paper introduces chemicals that are currently used in hydraulic fracturing process. Among chemicals, guar gum and guar derivatives are dominantly consumed to increase the viscosity of hydrofracking fluids. The role of additional additives, such as breakers and biocides, is presented by explaining how they cut down the molecular structure of guar gum and guar derivatives. In addition, crosslinking agent, pH controller, friction reducer, and water soluble polymers are also presented.

Construction and Application of the Hydraulic Scale Model for the Analysis of Sediment Transport by Tsumani (지진해일에 의한 토사이동 해석을 위한 수리모형장치 제작 및 적용성 평가)

  • Youm, Min Kyo;Lee, Baek Gun;Min, Byung Il;Lee, Jung Lyul;Suh, Kyung-Suk
    • Journal of Radiation Industry
    • /
    • v.7 no.2_3
    • /
    • pp.201-207
    • /
    • 2013
  • Soil liquefaction by tsunami or wave induced currents can cause serious damages to coastlines and coastal infrastructures. Although liquefaction caused by regular waves over sea beds has been extensively investigated, studies of tsunami-induced liquefaction near coastal area have been relatively rare. In this work, the hydraulic scale model has been designed and constructed to investigate the variations of wave height and sediment transport by tsunami. The distorted hydraulic scale model based on the Froude similarity was adopted to represent hydrodynamics and sediment transport in a coastal area. The scale model was composed of control box, screw axis, wave paddle and rotating coastal structure.

A Correlation Analysis between Physical Disturbance and Fish Habitat Suitability before and after Channel Structure Rehabilitation (하천구조 개선에 따른 어류 서식적합도와 물리적 교란의 상관분석)

  • Choi, Heung Sik;Lee, Woong Hee
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.1
    • /
    • pp.33-41
    • /
    • 2015
  • In this study, an optimal improvement method of stream channel structure is presented for the enhancement of fish habitat suitability by genetic algorithm. The correlation between fish habitat suitability and physical disturbance in stream is analyzed according to the changes of hydraulic characteristics by channel structure rehabilitation. Zacco koreanus which is an indicator fish of the soundness of aquatic ecosystem was selected as a restoration target species by investigating the community characteristics of fish fauna and river environments in Wonju stream. The habitat suitability is investigated by PHABSIM with the habitat suitability index of Zacco koreanus. Hydraulic analysis by HEC-RAS and physical disturbance evaluation in stream are carried out. The optimal channel width modified for the enhancement of fish habitat suitability is provided. The correlation analysis between habitat suitability and physical disturbance with the change of hydraulic characteristics by channel modification showed that the proper channel modification enhanced fish habitat suitability and mitigated physical disturbance in the stream. The improvement of physical disturbance score by the channel structure rehabilitation for the enhancement of fish habitat suitability was confirmed in this study.

Thermal-hydraulic analysis of He-Xe gas mixture in 2×2 rod bundle wrapped with helical wires

  • Chenglong Wang;Siyuan Chen;Wenxi Tian;G.H. Su;Suizheng Qiu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2534-2546
    • /
    • 2023
  • Gas-cooled space reactor, which adopts He-Xe gas mixture as working fluid, is a better choice for megawatt power generation. In this paper, thermal-hydraulic characteristics of He-Xe gas mixture in 2×2 rod bundle wrapped with helical wires is numerically investigated. The velocity, pressure and temperature distribution of the coolant are obtained and analyzed. The results show that the existence of helical wires forms the vortexes and changes the velocity and temperature distribution. Hot spots are found at the contact corners between helical wires and fuel rods. The highest temperature of the hot spots reach 1600K, while the mainstream temperature is less than 400K. The helical wire structure increases the friction pressure drop by 20%-50%. The effect extent varies with the pitch and the number of helical wires. The helical wire structure leads to the reduction of Nusselt number. Comparing thermal-hydraulic performance ratios (THPR) of different structures, the THPR values are all less than 1. It means that gas-cooled space reactor adopting helical wires could not strengthen the core heat removal performance. This work provides the thermal-hydraulic design basis for He-Xe gas cooled space nuclear reactor.

Analysis of Hydraulic Characteristics in the Middle Reaches of Nak-Dong River using 2-Dimensional Numerical Analyis Model (2차원 수치해석모형을 이용한 낙동강 중류구간의 하천흐름 해석)

  • Han, Sung-Dea;Choi, Hyun;Ahn, Chang-Hwan;Lee, Je-Yun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1732-1736
    • /
    • 2008
  • The characteristics of a river flow analysis are significant for river maintenance plan. At the present time, HEC-RAS, 1-Dimensional Numerical Analysis Model, is mainly applied to analyze the character of a river flow. The shape of a river is somewhat in longitudinal linear form. It was suspected that the usage of 1-dimensional numerical analysis model is more economical. Development of numerical analysis models and computers are possible to calculate large volume. Hence, it is possible to adapt the analysis of the key stations by 2-dimensional numerical analysis model. The limitation of 1-Dimensional Numerical Analysis Model is that it is hard to evaluate structure affection of numerical simulation by energy loss coefficient at river structure analyzing. When adaptation of the 2-dimensional numerical analysis model in river structure ensues, it takes more objective analyzing than 1-dimensional numerical analysis model for flow affection by river structure. 2-dimensional numerical analysis model consults with the different structure position of hydraulic characteristics and different water depth of shape and scope in vertical flow. 1-dimensional numerical analysis model is possible to simulate with only energy loss coefficient for sudden river section changing, sudden waterway changing by curved. 2-dimensional numerical analysis model use original geographical features. So the model removes technical subjectivity of faulty judgment. It is an objective analysis.

  • PDF

The Analysis of Damage Characteristic and Cause on Infrastructures by Typhoon (시설물별 태풍에 따른 피해특성 및 원인분석)

  • Shin, Chang-Gun;Lee, Jong-Young;Kim, Seok-Jo;Ji, Young-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1602-1610
    • /
    • 2005
  • In this study was investigated and analyzed of damage characteristics for infrastructures by typhoon that have been many occur. The objective Structures were the road and hydraulic structure. The road structure was included the cut-slopes, retaining walls and bridges. The hydraulic structure is divided with the dike, small-scale dam, reservoir and floodgate. The analysis result of the bridge damage cause is river bottom height increase and passage ability decrease. The principal damage reasons of the cut-slope structure are weakening the ground due to the localized torrential downpour and drainage defective. Also, the principal damage reasons of the small-scale dam, reservoir, dike and the floodgate are continuous collapse of dike beside the floodgate.And we divided a typhoon damage occurrence cause with artificial and natural. As the result of analysis, the many damage occurrence cause will be removed by system improvement and technical development.

  • PDF

Seepage Behaviors on the Box Culvert Side of Enlarged Levee (하천 보축제체의 배수통문 구조물 측면부 침투 특성)

  • Yang, Hakyoung;Kim, Youngmuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.4
    • /
    • pp.19-30
    • /
    • 2020
  • This numerical study is to investigate the seepage characteristics of the side of the structure in the event of leakage from the structural connection part of the drainage structure installed through the enlarged levee, and to analyze the effect of piping on the stabilization of the levee by the lateral penetration behavior. To take into account lateral seepage behavior, 2D and 3D numerical analyses were performed on the same model, and the effect of lateral seepage was analyzed to assess the validity of the numerical analysis. As a result, when leakage occurs and a lateral seepage is considered with the gate located on the riverside land, the maximum pore water pressure near the leakage point of the structure has been reduced by half compared to the normal seepage state where no leakage occurred. Excessive variation in the pore pressure was shown at the lower part of the structure, especially if lateral seepage is not considered. As a water level rises to the high water level, it shows the hydraulic gradient was larger than the critical hydraulic gradient, which will be vulnerable to long-term piping. If a gate is located in the inland and side seepage is not considered, the effect of the seepage water such as hydraulic gradient and seepage velocity is underestimated compared with the case of considering side seepage. The maximum hydraulic gradient is relatively small when lateral seepage is neglected if a gate is located in the riverside land and there was might be a risk of piping or loss of material. In addition, the period exceeding the critical hydraulic gradient was interpreted as a short time zone. As a result, it is considered that the possibility of piping can be underestimated if side seepage is ignored.

Kinematics and Structural Analysis for 5ton cargo-truck Elecrto-Hydraulic Sliding Deck Systems Manufacturing and Design of winch system for safety (5ton 카고트럭의 전동 유압 슬라이딩 데크 시스템 개발을 위한 기구학 해석 및 전산구조해석과 안전을 위한 윈치 시스템 설계)

  • Kim, Man-Jung;Song, Myung-Suk;Kim, Jong-Tae;Ryuh, Beom-Sahng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.73-80
    • /
    • 2019
  • In this paper, the basic design of the electric hydraulic sliding deck system was developed to develop the electric hydraulic sliding deck which can easily upgrade the loading and unloading of the agricultural machinery by modifying the load of the existing 5ton cargo truck. Through the kinematic analysis, The length and structure of the specimens were designed and the materials were selected for safety and economical efficiency through structural analysis. For the basic design of the sliding deck system, we surveyed the agricultural machinery to be transported and selected necessary elements. And have devised a system using a hydraulic cylinder that can meet selected factors. Through the simplified modeling and kinematic diagram, the operating structure of the sliding deck system was grasped and the minimum length and structure of the sliding deck were devised, In order to select the sliding deck material satisfying, four representative materials used in the automobile structure were selected. Selected the parts to be analyzed and compared the stresses and deformation amounts according to the material under the conditions of maximum load through simplified modeling. As a result, SS41P material was used to reduce the unit cost and to achieve safety. The winch system was designed and applied for moving up and down of the farm machinery which can not be operated.