• Title/Summary/Keyword: Hydraulic servosystem

Search Result 13, Processing Time 0.024 seconds

Optimal control of a hydraulic servosystem by an observer (관측기에 의한 유압 서어보 시스템의 최적제어)

  • 조승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.663-668
    • /
    • 1986
  • State variables of an observer were made use of to realize the optimal position control of a hydraulic servosystem with the inherent nonlinearities. The range of eigenvalues of an observer suitable for the hydraulic servosystem was investigated through computer simulation. The effect of direct state feedback of hydraulic servosystem was compared with that of estimated state feedback using observer to ascertain the possibility of performance increase using observer.

  • PDF

Improvement of Transient Response Charateristics of a Position Control Hydraulic Servosystem Using Observer (I) (관측기를 이용한 위치제어 유압 서어보 시스템의 과도응답 특성 개선 (I))

  • 이교일;조승호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.781-788
    • /
    • 1987
  • The state variables estimated in an observer were useed in feedback control of a hydraulic servosystem to increase the system stability and to enhance the system performance. The nonlinear hydraulic servosystem with the inherent nonlinearities due to the square root function of flow equation, the Coulomb friction and so on, was modelled as a fourth order linear hydraulic servosystem. Also, a second order linear system was derived for the observer-controller design. For these models, a fourth order linear observer and a second order linear observer were constructed respectively to evaluate the performance of the observer-based hydraulic servosystem. The results obtained from series of simulation showed that the system which had shown oscillatory phenomenon under proportional control became stable with the same maximum acceleration and velocity that it had started under proportional control.

Improvement of transient response characteristics of hydraulic servo system for position control by reduced-order observer (縮小次數 觀測器에 의한 位置制御 油壓 서어보시스템의 過度應答特性 改善)

  • 이경수;이교일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.1036-1043
    • /
    • 1987
  • The objective of this paper is to improve the transient response characteristics of hydraulic servosystem via a reduced-order observer which is modelled based upon the nonlinear hydraulic servosystem. The observer is a second order linear model and implemented using a 8 bit micro-computer. The performance of the observer-based hydraulic servosystem was investigated through the hybrid computer simulations and experiments. The result shows that the reduced-order observer can effectively improve the transient response characteristics of hydraulic servosystem.

Model Reference Adaptive Control Using $\delta$-Operator of Hydraulic Servosystem (유압 서보계의 $\delta$연산자를 이용한 모델기준형적응제어)

  • Kim, Ki-Hong;Yoon, Il-Ro;Yum, Man-Oh
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.151-157
    • /
    • 2000
  • The MRAC theory has proved to be one of the most popular algorithms in the field of adaptive control, particularly for practical application to devices such as an hydraulic servosystem of which parameters are unknown or varying during operation. For small sampling period, the discrete time system becomes a nonminimal phase system. The $\delta$-MRAC was introduced to obtain the control performance of nonminimal phase system, because the z-MRAC can not control the plant for small sampling period. In this paper, $\delta$-MRAC is applied to the control of an hydraulic servosystem which is composed of servovalve, hydraulic cylinder and inertia load.

  • PDF

Improvement of Tansient Response Characteristics of a Position Control Hydraulic Servosystem Using Observer (II) -Experimental Results Using Analog Observer- (觀測器를 利용한 位置制御 油壓 서보 시스템의 過度應答 特性 改善 (II) -애널로그 관측기를 이용한 실험결과-)

  • 이교일;조승호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.215-220
    • /
    • 1988
  • The oscillatory hydraulic servosystem and the stable hydraulic servosystem under proportional control were feedback-controlled respectively using the estimated states of the observer. The observer was constructed in the analog computer and then it was interfaced with the real hydraulic servosystem to excute the experiment. As a result of experiment, the system that had been stable under proportional control responded more rapidly than before and the system that had shown oscillatory phenomenon under proportional control became stable with the same maximum acceleration and velocity that it had started under proportional control.

A study on design and control of hydraulic test rig for performance evaluation of active suspension system (능동 현가시스템의 성능평가를 위한 유압식 시험기의 설계 및 제어에 관한 연구)

  • 손영준;이광희;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1445-1449
    • /
    • 1996
  • To evaluate of active suspension, it is necessary for special equipment - so called Test Rig which can perfectly realize the road condition and the impact from the road. And most of the test rig systems controlling force accurately and rapidly consist of electro-hydraulic servo mechanism, and they need robust controller which can endure outer road change. But in the case of PID controller, we should choose its best gains by trial and error method, and once its gains are fixed, they cannot get changed, so we should reset PID controller gains respectively when the road is changed. Therefore based on the load pressure feedback compensation method, our aim at constructing electro-hydraulic test rig is not affected by various road disturbance.

  • PDF

Control of an Electro-hydraulic Servosystem Using Neural Network with 2-Dimensional Iterative Learning Rule (2차원 반복 학습 신경망을 이용한 전기.유압 서보시스템의 제어)

  • Kwak D.H.;Lee J.K.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • This paper addresses an approximation and tracking control of recurrent neural networks(RNN) using two-dimensional iterative learning algorithm for an electro-hydraulic servo system. And two dimensional learning rule is driven in the discrete system which consists of nonlinear output function and linear input. In order to control the trajectory of position, two RNN's with the same network architecture were used. Simulation results show that two RNN's using 2-D learning algorithm are able to approximate the plant output and desired trajectory to a very high degree of a accuracy respectively and the control algorithm using two same RNN was very effective to control trajectory tracking of electro-hydraulic servo system.

  • PDF

A Study Compensation Method for Dynamic Characteristics in Electro-Hydraulic Servosystem Equipping Load Pressure Feedback Compensator (부하압력 피이드백 보상기를 장착한 전기-유압서보계의 동특성 개선에 관한 연구)

  • Kim, Jong-Kyum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.1
    • /
    • pp.126-136
    • /
    • 1992
  • In this paper, a simple structured feedback compensation scheme for a electro-hydraulic servo system to keep the response characteristics unchanged regardless of the load variation is proposed. In electro-hydraulic servo system, servovalve is most important control element. But the relation between input corrent and output flowrate of the servovalve has properties as follows; firstly, in spite of constant input current, output flowrate decreases as load pressure increases, secondly, according to frequency response of typical servovalve, the characteristics of gain and phase shift is something like 2'nd order system. Load pressure feedback compensation method has been applied to eliminate the first influence, the second influence has been improved by phase lead compensation method. As a result of above compensation methods, regardless of variation load condition, spring and inertia load, the compensation scheme has been verified to be effective within the range of frequency less than 25Hz by static response and dynamic response in time domain and frequency domain through experiments.

  • PDF

A Study on the Position Control of an Electro-Hydraulic Servomechanism Using Variable Structure System (가변구조를 이용한 전기-유압서보계의 위치제어에 관한 연구)

  • 허준영;권기수;하석홍;조겸래;이진걸
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.213-220
    • /
    • 1989
  • This paper describes the application of the variable structure control(VSC) concept for the position control of an electro-hydraulic servomotor system. The basic philosopy of VSC is that the structure of the feedback control is altered as the state crosses discontinuity surfaces in the state space with the result that certain desirable properties are achieved. The switching of the control function yields total(or selective) invariance to system parameter variations and disturbances, and closed loop eigen value placement in time-varing and uncertain systems. The control scheme is derived, implemented and tested in the laboratory where analog controller have been used to control the representive servosystem. The control system schematics are given and simple results are shown for illustration. And the results of variable structure system for the electro-hydraulic servomotor were compared to that of the fixed structure system when load disturbance and system parameter variation exists.

Characteristics Improvement of Hydraulic Servosystem by Using Generalized Minimum Variance Adaptive Control (일반화최소분산 적응제어를 이용한 유압 서보계의 특성개선에 관한 연구)

  • 박용호;김기홍;이진걸
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.388-394
    • /
    • 2003
  • Hydraulic system is difficult to obtain a suitable performance due to the nonlinearity load pressure change and system parameter variation. The requirement of control a1gorithm has been complex in order to satisfy the performance. The adaptive control is a control method which is suggested to achieve the control object under the plant characteristics change. In spite of the case that plant characteristics and the degree of variation are difficult to grasp. the adaptive control could keep the characteristics of closed-loop system generally. In this study. a method of combined generalized minimum variance adaptive control (GMVAC) and output error feedback is proposed, in order to solve the problem of non-minimum phase of plant and the vibration and overshoot in initial response. The control performance according to the variation of characteristics of plant is evaluated by changing the supply pressure. The experimental results show the effectiveness of the proposed scheme.