• Title/Summary/Keyword: Hydraulic pump system

Search Result 386, Processing Time 0.027 seconds

A Hydraulic-Oil Pump System using SR Drive with a Direct Torque Control Scheme

  • Lee, Dong-Hee;Kim, Tae-Hyoung;Ahn, Jin-Woo
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.491-498
    • /
    • 2009
  • The hydraulic-oil pump is widely used for building machinery, brake systems of vehicles and automatic control systems due to its high dynamic force and smooth linear force control performance. This paper presents a novel direct instantaneous pressure control of the hydraulic pump system with SRM drive. The proposed hydraulic pump system embeds the pressure controller and direct instantaneous torque controller. Due to the proportional relationship between pump pressure and torque, pressure can be controlled by the motor torque directly. The proposed direct torque controller can reduce inherent torque ripple of SRM, and develop a smooth torque, which can increase the stability of the hydraulic pump. The proposed hydraulic pump system has also fast step response and load response. The proposed hydraulic pump system is verified by computer simulation and experimental results.

Direct Instantaneous Torque Control of Hydraulic Oil Pump System (유압펌프시스템의 직접 순시 토오크 제어)

  • Liang, Jianing;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.150-151
    • /
    • 2007
  • In hydraulic oil pump system, pressure has a linear relationship with output torque of motor. Torque control of pump drive can easily output stable pressure, and it can retain required pressure at minimum speed to save power consumption. Switched reluctance motor(SRM) has many advantages such as low cost and low inertia. It can generate high torque at low speed. But inherent high torque ripple of SRM influences performance of pressure control in hydraulic oil system. This paper presents direct instantaneous torque control(DITC) of hydraulic oil pump system. DITC method can reduce inherent torque ripple of SRM, and output smoothing torque to load. So the proposed hydraulic oil pump system can support smooth pressure and fast dynamic power supply to the hydraulic pump system. At last the proposed hydraulic oil pump system is verified by computer simulation and experimental results.

  • PDF

A Stuyd on the Load-sensitive Hydraulic Pump Control System (부하 감응형 유압 펌프 제어 시스템에 관한 연구)

  • 송창섭;이용주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.585-588
    • /
    • 1995
  • In this study, the analysis of the static and dynamic characteristics of the load-sensitive hydraulic pump control system used in the hydraulic excavator was performed by hydraulic circuit ananlysis program. Thess results was verified by the experimental data of the hydraulic excavtor system. The responses on effective parameters of system at the controllable region and the pressure variation of the pump used in hydraulic excavator system was studied to enhance the static performace of the system. the parameter enhance dynamic sharacteristics was considerd.

  • PDF

A Study on the Characteristic Analysis of the Load-sensitive Hydraulic Pump Control System (부하 감응형 유압 펌프 제어 시스템의 특성 해석에 관한 연구)

  • 이용주;이승현;송창섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.148-154
    • /
    • 2000
  • In this study, the static and the dynamic characteristics of the load-sensitive hydraulic pump control systems of a hydraulic excavator were analyzed using the developed analysis tool. The results were compared with the experimental ones. To improve the static performance of the system, the system parameter effects on the controllable region and the pump pressure variation were studied. The parameters enhancing dynamic characteristics were also considered.

  • PDF

Analysis of Pulsating Flow in a Swash Plate Type Piston Pump and Transmission Line (사판식 피스톤 펌프-관로계에서의 맥동류 해석)

  • Choi, Young-Hak;Lee, Ill-Young
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.45-49
    • /
    • 2000
  • Vibration and noise problem in a hydraulic system became one of very important factors in evaluating the performance of a hydraulic system. It is known that vibration and noise in a hydraulic system is directly related to flow pulsation in the hydraulic pump in the system. This study investigated a modeling and simulation technique for pulsating flow in a swash plate type axial piston pump. The key design factors of the pump related to flow pulsation phenomenon of the pump are the physical parameters for notches on the valve plate of the pump. By the numerical analysis, effects of the physical parameters of the notch on the flow pulsation was elucidated.

  • PDF

Development of the HPM System to Improve Efficiency of the Hydraulic Excavator (유압식 굴삭기 효율 향상을 위한 HPM 시스템 개발)

  • Kwon, Yong Cheol;Lee, Kyung Sub;Kim, Sung Hun;Koo, Byoung Kook
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.1-8
    • /
    • 2019
  • The HPM (High-speed Power Matching) system is an electro-hydraulic control system. It directly controls the swash plate of the pump by selecting four-loop logic based on joystick signals, pump flow, and pressure signal to improve the efficiency and controllability of construction machines. In the NFC (Negative Flow Control) system, a typical pump control system using conventional open center type MCV, the loss is continuously generated by flow through the center bypass line even when the excavator is not in operation. Also, due to the slow response of the pump that indirectly controls the flow rate using the pressure regulator, peak pressure occurs at the start or stop of the operation. Conversely, the HPM system uses an MCV without center-by-pass flow path and the swash plate of a pump for the HPM is controlled by a high-speed proportional flow control valve. As a result, the HPM system minimizes energy loss in standby state of the excavator and enables peak pressure control through rapid electro-hydraulic control of a pump. In this paper, the concept of the HPM system algorithm is introduced and the hydraulic system efficiency is compared with the NFC system using the excavator SAT (System Analysis Tool).

Comparative Characteristic Analysis of a Hydraulic Control System Using a Speed Controlled Hydraulic Pump (유압펌프 회전속도 제어방식 유압제어시스템의 특성 비교 분석)

  • Jeong, H.S.;Jeong, S.W.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.3
    • /
    • pp.13-19
    • /
    • 2010
  • Hydraulic systems are widely used as a power transfer and/or power control system due to its flexibility, controllability, accuracy and high power density. Valve controlled and/or pump capacity controlled systems are normally adopted as a control device, but nowadays pump speed controlled systems are emerging as a new energy-efficient hydraulic control system. In this paper the pump speed controlled system for the cylinder position control of a counter balance circuit is investigated by simulation study and position control experiments were carried out. As a result, the possibility and efficiency of the pump speed controlled system were verified.

  • PDF

A Study on Design and Control of Electro-Hydraulic Pump System (전기.유압펌프 시스템의 설계 및 제어에 관한 연구)

  • 박성환;하석홍;이진걸
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1062-1070
    • /
    • 1995
  • The study deals with controlling the velocity of hydraulic motor with PI controller through the control of displacement pump which has higher efficiency than valve-controlled system. This was done as follows. First, we modified original displacement pump and designed this electrohydraulic puma system. Second, after experimenting static and dynamic characteristics, we identified system parameter of approximated model. Lastly, to control the velocity of hydraulic motor we controlled the angle of the swash plate of displacement pump. Test carried out in the laboratory shows that transient and steady state response could be improved by PI controller reducing power loss.

An Experimental Study on the Efficiency of the Water Hydraulic Piston Pump System driven by an Electric Inverter (전기 인버터 구동 수압 피스톤 펌프 시스템의 효율 성능에 관한 실험적 연구)

  • Ham, Y.B.;Park, J.H.;Kim, S.D.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.4
    • /
    • pp.1-7
    • /
    • 2006
  • A water hydraulic pump is likely to have serious problems of high leakage, friction and low energy efficiency. A water hydraulic pump has commonly a fixed displacement type and its outlet flow is adjusted by controlling rotation speed of the pump, which can be implemented by using an electric inverter. This study aims to investigate energy efficiency of the water hydraulic pump system which is driven by an electric inverter. The study is based on the experimental results. The pump which is used in the study shows relatively good efficiency and low leakage, low friction as well. The reasons for the good performance of pump is also investigated.

  • PDF

A Study on Acting Forces on the Vane of Vane Pump used for Vehicles′ Hydraulic Power Steering (차량용 HPS 베인펌프의 베인의 작용력에 관한 연구)

  • 정석훈;오석형
    • Tribology and Lubricants
    • /
    • v.20 no.3
    • /
    • pp.163-167
    • /
    • 2004
  • Reducing friction torque of the oil hydraulic vane pump used as the power source of power steering system should consider friction torque including viscous and mechanical friction torque according to the changes of rpm and pressure. This paper analyzes the forces acting on the vane to reduce the friction torque of the vane of the hydraulic vane pump used for Hydraulic Power Steering(HPS) system, and futhermore, the forces according to the shapes of cam profiles are analyzed.