• 제목/요약/키워드: Hydraulic pressure cylinder

검색결과 200건 처리시간 0.029초

반능동가변형 주퇴복좌기의 설계 및 제어

  • 김동환;최문철;이규섭
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.213-217
    • /
    • 1997
  • The semi-active recoil system provides automatic hydraulic pressure and recoil length by an exteral impulse compared with the conventional recoil system. We developed the proto type of recoil system and validated the performance through simulation and experiment. The main issue of the system is how to adjust pressure and length simultaneously. The system consists of external pressure control valve and flow control valve outside of cylinder. The pressure control valve control the cylinder pressure and recoil length. The controlled system enhances the control performance.

분말야금법을 이용한 유압펌프용 실린더 블록의 제조 가능성 연구 (Feasibility Study on Making a Cylinder Block of a Hydraulic Pump by Powder Metallurgy)

  • 지창운;정석환;권영삼;강민석;전만수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.258-261
    • /
    • 2005
  • In this paper, experimental and numerical attempts are made fur application of powder metallurgy forming technology to making the cylinder block of a hydraulic pump of which height reaches nearly 70 mm and is ten times larger than the wall thickness. Leak tests with several compositions are carried out in order to find allowable powder composition to prevent leak under high pressure in service and CAE techniques are applied to finding proper process conditions. Through the research, the possibility of the powder formed cylinder block that is very competitive from the point of both cost and mass production has been shown, even though its thickness exceeds the recommended limit considering heterogeneous density distribution caused by the friction between a powder compact and dies.

  • PDF

사축식 유압 피스톤 펌프의 밸브 플레이트 형상과 하우징 진동간 상관관계에 대한 해석 (Analysis on the Relationships Between the Valve Plate Geometry and the Housing Vibration of a Bent-Axis Type Hydraulic Piston Pump)

  • 김성훈;홍예선
    • 대한기계학회논문집A
    • /
    • 제30권1호
    • /
    • pp.52-59
    • /
    • 2006
  • The vibration of hydraulic piston pumps is induced by the periodically changing cylinder chamber pressure whose waveform is significantly influenced by valve plate geometry. In this study, the force input to the housing of a bent-axis type hydraulic piston pump was computed by deriving the dynamic equations of its piston and cylinder barrel. The vibration intensity of the pump was represented by the acceleration amplitude of its housing. In order to comparatively evaluate the influence of valve plate geometry on the vibration of pump housing, two different types of valve plate were tested. The computed results showed good agreement with the experimental data, indicating that the vibration acceleration of pump housing is rather dependent on the variation amplitude of balance coefficient than the changing slope or overshoot of cylinder chamber pressure. It was also confirmed that the design effect of valve plates could be directly examined out by monitoring the vibration acceleration of pump housing.

가변하중을 받는 유압실린더의 제어특성개선 (Control Characteristics Improvement of Single Rod Hydraulic Cylinder Subjected to Varying Load)

  • 염만오
    • 한국기계가공학회지
    • /
    • 제2권4호
    • /
    • pp.46-52
    • /
    • 2003
  • For position control of electro-hydraulic servo system, single rod cylinders and double rod cylinders are used. Single rod cylinders have simple structure for manufacturing but different volume ratio of two sides induce to non-linearity in process of then mathematical modeling. So only with conventional PID control method it is difficult to control single rod cylinders precisely. For mole precise position control of single rod cylinders, a controller which is inserted a velocity feedback PID controller and MRAC controller are proposed. With experiment control performances of three control methods are compared. In case of experiment, for external varying load to the system, a hydraulic cylinder and a pressure control valve are used. In conclusion a MRAC is considered a suitable control method for external varying load.

  • PDF

압력센서를 이용한 수중항만공사 로봇의 실린더 변위 추정에 관한 연구 (Study on the estimation of the cylinder displacement of an underwater robot for harbor construction using a pressure sensor)

  • 김치효;김태성;이민기
    • 한국항해항만학회지
    • /
    • 제36권10호
    • /
    • pp.865-871
    • /
    • 2012
  • 수중 방파제 피복작업은 사석의 유실을 방지하기 위해 방파제 겉면에 2-3ton의 돌을 쌓는 작업으로 현재 잠수부에 의해 수작업으로 시공을 하고 있다. 수중에서의 사야문제와 작업의 특성상 잠수부의 육감에 의해 공사가 시행되며 작업 과정에서 산업재해가 빈번히 발생한다. 이러한 문제점을 해결하기 위해 본 논문에서는 수중 방파제 피복작업을 위한 수중항만공사 로봇을 개발하였다. 로봇의 유압 실린더 제어를 위해 위치 센서가 필요한데 기존 센서는 구동축에 부착되어 방수가 어렵고 건설현장에서 사용하기에는 내구성이 좋지 못하다. 하지만 압력센서는 유압라인상의 임의의 위치에 부착이 가능하므로 방수박스 내부에 설치할 수 있어 방수가 용이하고 내구성을 높일 수 있다. 따라서 본 논문에서는 압력센서를 이용하여 수중항만공사 로봇의 유압 실린더 변위를 간접적으로 측정하는 관측기를 설명한다.

비례전자밸브를 사용한 유압서보계의 압력제어 (Pressure control of hydraulic servo system using proportional control valve)

  • 양경욱;오인호;이일영
    • 대한기계학회논문집A
    • /
    • 제21권8호
    • /
    • pp.1229-1240
    • /
    • 1997
  • The purpose of this study is to build up control scheme that promptly control pressure in a hydraulic cylinder having comparatively small control volume, using a PCV (proportional control valve) and a digital computer. Object pressure control system has the character to be unstable easily, because the displacement-flow gain of the PCV is too large considering the small volume of the hydraulic cylinder and the time delay of response of the PCV is comparatively long. Considering the above-mentioned characteristics of the object pressure control system, in this study, control system is designed with two degree of freedom control scheme that is composed by adding a feed-forward control path to I-PDD$^{2}$ control system, and a reference model is used on the decision of control parameters. And through some experiments on the control system with FF-I-PDD$^{2}$ controller, the validity of this control method has been confirmed.

고주파수 PWM제어를 이용한 ABS의 맥동 저감에 관한 연구 (A Study on Falling Pressure Surge of ABS Using High Frequency PWM Control)

  • 이용주;김병우;박호
    • 한국공작기계학회논문집
    • /
    • 제12권3호
    • /
    • pp.38-44
    • /
    • 2003
  • The solenoid valve in ABS hydraulic modulator is a two directional on-off valve and is controlled by around 100Hz high speed pulse width modulation. When the valve is switched from open state to closed state, noise and vibration due to pressure surge phenomena in the hydraulic line and wheel cylinder are made. In this study, we identify Pressure surge phenomenon in the braking process of a ABS, and investigate the way to reduce the phenomenon. For the purpose of theoretical analysis on the pressure surge in the closed state hydraulic line, characteristic curve method based on wave equation was utilized. To reduce the surge, high frequency control of 20kHz was attempted. The result showed that the surge pressure of 50% was reduced compared to one observed in the low frequency control. Duty variation of high frequency can control current of solenoid valve and prevent sudden change of displacement.

Improvement of the Low-Speed Friction Characteristics of a Hydraulic Piston Pump by PVD-Coating of TiN

  • Hong Yeh-Sun;Lee Sang-Yul;Kim Sung-Hun;Lim Hyun-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.358-365
    • /
    • 2006
  • The hydraulic pump of an Electro-hydrostatic Actuator should be able to quickly feed large volume of oil into hydraulic cylinder in order to reduce the response time. On the other hand, it should be also able to precisely dispense small amount of oil through low-speed operation so that the steady state position control error of the actuator can be accurately compensated. Within the scope of axial piston type hydraulic pumps, this paper is focused on the investigation how the surface treatment of their cylinder barrel with TiN plasma coating can contribute to the reduction of the friction and wear rate of valve plate in the low-speed range with mixed lubrication. The results showed that the friction torque of the valve plate mated with a TiN coated cylinder barrel could be reduced to 22% of that with an uncoated original one when load pressure was 300 bar and rotational speed 100 rpm. It means that the torque efficiency of the test pump was expected to increase more than 1.3% under the same working condition. At the same time, the wear rate of the valve plate could be reduced to $40\sim50%$.

유압 피스톤 펌프의 폐입구간에서 발생하는 압력변동 특성 (Pressure Variation Characteristics at Trapping Region in Oil Hydraulic Piston Pumps)

  • 김종기;정재연;노병준;송규근;오석형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2071-2075
    • /
    • 2003
  • Pressure variation is one of the major sources on noise emission in the oil hydraulic piston pumps. Therefore, it is necessary to clarify about pressure variation characteristics of the oil hydraulic piston pumps to reduce noise. Pressure variations in a cylinder at trapping region were measured during pump working period with discharge pressures, rotational speeds. The effect of pre-compression of the discharge port with three types valve plates also investigated. It was found that the pressure variation characteristics of oil hydraulic piston pumps deeply related with pre-compression design of the discharge port. Also, it was found that the pressure overshoot at trapping region can reduce by use of pre-compression at the end of the discharge port in valve plate

  • PDF

자동차 수동 변속기 클러치 시스템의 답력 이력 특성 예측 모델 (Automotive Manual Transmission Clutch System Modeling for Foot Effort Hysteresis Characteristics Prediction)

  • 이병수
    • 한국자동차공학회논문집
    • /
    • 제16권5호
    • /
    • pp.164-170
    • /
    • 2008
  • A typical clutch system for automotive manual transmissions transfers hydraulic pressure generated by driver's pedal manipulation to the clutch diaphragm spring. The foot effort history during the period of push is different than the period of the clutch pedal's return. The effort or load difference is called clutch foot effort hysteresis. It is known that the hysteresis is caused by friction. The frictional force and moment are produced between various component contact points such as between the rubber seal and the inner wall inside the hydraulic cylinder and between the diaphragm spring and the pressure plate, etc. Understanding the clutch pedal foot effort hysteresis is essential for a clutch release system design and analysis. The dynamic model for a clutch release system is developed for the foot effort hysteresis prediction and a simulation analysis is performed to propose a tool for analysing a clutch system.