• 제목/요약/키워드: Hydraulic power take-off system

검색결과 9건 처리시간 0.022초

수직 진자형 파력 발전 장치의 운동성능 및 파력 추출에 관한 실험적 연구 (Experimental Study on Hydrodynamic Performance and Wave Power Takeoff for Heaving Wave Energy Converter)

  • 김성재;구원철;민은홍;장호윤;윤동협;이병성
    • 한국해양공학회지
    • /
    • 제30권5호
    • /
    • pp.361-366
    • /
    • 2016
  • The aim of this study was to experimentally investigate the hydrodynamic performance of a hemispheric wave energy converter (WEC) and its wave power takeoff. The WEC is a heaving body-type point absorber with a hydraulic-pump power take-off (PTO) system. The hydraulic PTO system consists of a hydraulic cylinder, hydraulic motor, and generator, with consideration given to the hydraulic pressure and flow rate. Two body model shapes, including the original hemisphere and a bottom-chopped hemisphere, were considered. The heave RAOs of the two models were evaluated for various body drafts. The effects of the hydraulic PTO system on the RAOs were also investigated.

파력발전기의 동력인출장치의 회전각도가 효율에 미치는 영향 분석 (Investigation of Moving Angle of Power Take off Mechanism on the Efficiency of Wave Energy Converter)

  • 도황팅;누엔밍치;판콩빙;이세영;박형규;안경관
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권3호
    • /
    • pp.25-35
    • /
    • 2015
  • The hydraulic power-take-off mechanism (HPTO) is one of the most popular methods in wave energy converters (WECs). However, the conventional HPTO with only one direction motion has a number of drawbacks that limit its power capture capability. This paper proposes an adjustable moving angle wave energy converter (AMAWEC) and investigates the effect of the moving angle on the performance of the wave energy converter to find the optimal moving angle in order to increase the power capture capability as well as energy efficiency. A mathematical model of components from a floating buoy to a hydraulic motor was modeled. A small scale WEC test rig was fabricated to verify the power capture capability and efficiency of the proposed system through experiments.

The effects of geometrical buoy shape with nonlinear Froude-Krylov force on a heaving buoy point absorber

  • Kim, Sung-Jae;Koo, Weoncheol;Kim, Moo-Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.86-101
    • /
    • 2021
  • This study examined the effects of buoy shape and Nonlinear Froude-Krylov force (NFK) on a heaving-buoy-type Wave Energy Converter (WEC). Based on the Maclaurin expansion, the theoretical solutions of the NFK were derived for three different buoy shapes; hemispheric buoy, circular vertical cylinder, and truncated conical cylinder. A hydraulic power take-off system was adopted, and the latching control strategy was applied to maximize the extracted power from the WEC. The nonlinear effects of the Froude-Krylov force and restoring force on the heaving point absorber were investigated by comparing the heave Response Amplitude Operator (RAO) and time-averaged power extraction. The results showed that the conventional linear analyses were overestimated by up to 50% under the high amplitude wave condition. The latching control strategy was the most effective when peak wave period of regular or irregular wave was 0.4-0.45 times the heave natural period of the buoy.

특장 차량용 하이브리드 발전시스템의 출력특성 (Output characteristics of hybrid power generation system for special vehicles)

  • 한근우;최명현;김성곤;이충훈;한만승;정영국
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.288-289
    • /
    • 2017
  • This study deals with output characteristics of a hybrid power generation system for a vehicle such as a crane, a fire engine, and a wingbody. The proposed method obtains the commercial AC voltage of single phase 220V/60Hz by connecting a variable speed three-phase PMSG(Permanent magnetic synchronous generator) and an AC/DC/AC power converter to PTO (Power take off) or hydraulic motor. The proposed system is fabricated and tested to demonstrate the usefulness of the proposed system.

  • PDF

압력커플링을 이용한 다수개의 부표를 가진 파력발전기 개발 (Development of a Multi-Absorbing Wave Energy Converter using Pressure Coupling Principle)

  • 도황팅;누엔밍치;판콩빙;이세영;박형규;안경관
    • 드라이브 ㆍ 컨트롤
    • /
    • 제11권3호
    • /
    • pp.31-40
    • /
    • 2014
  • This paper proposes a multi absorbing wave energy converter design, in which a hydrostatic transmission is used to transfer wave energy to electric energy. The most important feature of this system is its combination of the pressure coupling principle with the use of a hydraulic accumulator to eliminate the effects of wave power fluctuation; this maintains a constant speed of the hydraulic motor. Tilt motion of a floating buoy was employed as the power take-off mechanism. Furthermore, a PID controller was designed to carry out the speed control of the hydraulic motor. The design offers some advantages such as extending the life of the hydraulic components, increasing the amount of energy harvested, and stabilizing the output speed.

다수의 가동물체형 파력발전기에 있어서의 2차측 제어 정유압변속기 응용 (Application of Secondary Control Hydrostatic Transmission in A Multi-Point Absorbing Wave Energy Converter)

  • 도황팅;안경관
    • 드라이브 ㆍ 컨트롤
    • /
    • 제11권1호
    • /
    • pp.1-7
    • /
    • 2014
  • This paper presents a novel concept of wave energy converter for electric generation from the ocean wave energy. In this paper, a Multi-Point Absorbing Wave Energy Converter, shortened as MPAWEC by using Secondary Control Hydrostatic Transmission (SCHST) was proposed. The power take-off (PTO) system in the proposed MPAWEC includes multi heaving buoys to drive hydraulic pumps placed at different points. The application of SCHST in MPAWEC gives some advantages, such as longevity of hydraulic components; more energy is harvested; the variation of the pressure in the accumulator limited; therefore the accumulator volume is reduced and the output speed is more stable, etc. A PID controller was designed for speed control of the hydraulic motor. The simulation results indicated that the speed of the generator was ensured with the relative error as 0.67%; the efficiency of the proposed system was 71.4%.

Hydraulic Model Test of a Floating Wave Energy Converter with a Cross-flow Turbine

  • Kim, Sangyoon;Kim, Byungha;Wata, Joji;Lee, Young-Ho
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권3호
    • /
    • pp.222-228
    • /
    • 2016
  • Almost 70% of the earth is covered by the ocean. Extracting the power available in the ocean using a wave energy converter has been seen to be eco-friendly and renewable. This study focuses on developing a method for analyzing a wave energy device that uses a cross-flow turbine. The motion of the ocean wave causes an internal bi-directional flow of water and the cross-flow turbine is able to rotate in one direction. This device is considered of double-hull structure, and because of this structure, sea water does not come into contact with theturbine. Due to this, the problem of befouling on the turbine is avoided. This study shows specific relationship for wave length and several motions.

Analysis of load data for developing a self-propelled underground crop harvester during potato harvesting

  • Min Jong Park;Seung Min Baek;Seung Yun Baek;Hyeon Ho Jeon;Wan Soo, Kim;Ryu Gap, Lim;Yong Joo Kim
    • 농업과학연구
    • /
    • 제49권4호
    • /
    • pp.845-855
    • /
    • 2022
  • The purpose of this study is to develop a self-propelled underground crop harvester and its performance was evaluated by measuring the load during actual potato harvesting operations. This study was conducted at a constant working speed of 1 km·h-1. A load measurement system was installed to measure the actual load and the required working power was analyzed. A hydraulic pressure sensor was also installed to measure the hydraulic pressure. The required hydraulic power was calculated using the hydraulic pressure and flow rate. The results showed that the engine speed, torque, and power during harvesting operation were in the range of 845 - 1,423 rpm, 95 - 228 Nm, and 9 - 31 kW, respectively. Traction power, excluding the hydraulic pump of the tractor and power take-off (PTO) output, was in the range of 9 - 28 kW, and it was confirmed that it occupies a ratio of 16.2 to 50% of the engine rated output. The engine can supply the minimum required traction power to move the vehicle. This means that the engine used in this study could be down-sized to be suitable for an underground crop harvester. In this study, the gear stages of the tractor were not considered. This research thus shows the possibility of developing a self-propelled underground crop harvester.

Analysis of the power requirements of a 55 kW class agricultural tractor during a garlic harvesting operation

  • Seung-Min, Baek;Wan-Soo, Kim;Seung-Yun, Baek;Hyeon-Ho, Jeon;Jun-Ho, Lee;Ye-In, Song;Yong, Choi;Young-Keun, Kim;Sang-Hee, Lee;Yong-Joo, Kim
    • 농업과학연구
    • /
    • 제48권4호
    • /
    • pp.1039-1050
    • /
    • 2021
  • The purpose of this study is to measure load data for a 55 kW class agricultural tractor during a harvesting operation and to analyze the required power according to the working conditions. A field test was conducted at three different tractor speeds (1.2, 1.3, and 1.4 km·h-1). A load measurement system was developed for the front axles, rear axles, and for power take-off (PTO). The torque and rotational speeds of the axles and PTO were measured during the field test and were calculated as the required power. The results showed that the total required power was in the range of 4.86 - 5.48 kW during the harvesting operation according to the tractor speed, and it was confirmed that this represents a ratio of 8.8 - 10.0% of the engine rated power. Also, it was confirmed that the required power of the axle and PTO increased as the tractor speed increased. In future studies, we plan to supplement the measurement system for a tractor to include a hydraulic system and perform a field test for harvesting various underground crops.