• Title/Summary/Keyword: Hydraulic oscillation

Search Result 56, Processing Time 0.019 seconds

Experimental Study and Numerical Simulation of Cavity Oscillation in a Conical Diffuser

  • Chen, Chang-Kun;Nicolet, Christophe;Yonezawa, Koichi;Farhat, Mohamed;Avellan, Francois;Miyazawa, Kazuyoshi;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.91-101
    • /
    • 2010
  • Based on the one-dimensional stability analysis, the self-excited oscillation in hydraulic power generating systems was studied by a simple experiment and numerical simulation. It was shown that a cavity in a conical diffuser can cause surge. With the diffuser, a high amplitude and low frequency oscillation occurs at low cavitation number. This oscillation was not observed with the straight pipe. It was confirmed that the diffuser effect of the draft tube can be the cause of the full load surge in hydraulic power system. Numerical results were also analyzed to check the validity of the one-dimensional stability analysis.

Unstable Operation of Francis Pump-Turbine at Runaway: Rigid and Elastic Water Column Oscillation Modes

  • Nicolet, Christophe;Alligne, Sebastien;Kawkabani, Basile;Simond, Jean-Jacques;Avellan, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.324-333
    • /
    • 2009
  • This paper presents a numerical simulation study of the transient behavior of a $2{\times}340MW$ pump-turbine power plant, where the results show an unstable behavior at runaway. First, the modeling of hydraulic components based on equivalent schemes is presented. Then, the 2 pump-turbine test case is presented. The transient behavior of the power plant is simulated for a case of emergency shutdown with servomotor failure on Unit 1. Unstable operation at runaway with a period of 15 seconds is properly simulated using a 1-dimensional approach. The simulation results points out a switch after 200 seconds of the unstable behavior between a period of oscillations initially of 15 seconds to a period of oscillation of 2.16 seconds corresponding to the hydraulic circuit first natural period. The pressure fluctuations related to both the rigid and elastic water column mode are presented for oscillation mode characterization. This phenomenon is described as a switch between a rigid and an elastic water column oscillation mode. The influence of the rotating inertia on the switch phenomenon is investigated through a parametric study.

Experimental Study and Numerical Simulation of Cavity Oscillation in a Diffuser with Swirling Flow

  • Chen, Chang-Kun;Nicolet, Christophe;Yonezawa, Koichi;Farhat, Mohamed;Avellan, Francois;Miyazawa, Kazuyoshi;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.80-90
    • /
    • 2010
  • The cavity oscillation with swirling flow in hydraulic power generating systems was studied by a simple experiment and numerical simulation. Several types of fluctuation were observed in the experiment, including the cavitation surge caused by the diffuser effect and the vortex precession by the swirling flow. Both cavitation surge and vortex precession were simulated by CFD. Detailed flow structure was examined through flow visualization and CFD.

Analysis of dynamic characteristic for 6 DOF motion simulator driven by hydraulic servo cylinder (유압서어보실린더로 구동되는 6자유도 운동재현기의 동특성 해석)

  • 서정웅;이동권;민병주;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.1-6
    • /
    • 1989
  • For the design of synergistic hydraulic motion simulator, the load locus method is introduced. The given mass property of load and its velocity profile is resolved into the load locus of each actuator which decides the suitable valve and cylinder. This asymmtic cylinder and 4 way valve system have the pressure oscillation on zero velocity. The variable structure position controller which based on linearized flow equation makes elimination of the unstable pressure oscillation.

  • PDF

One-Dimensional Analysis of Full Load Draft Tube Surge Considering the Finite Sound Velocity in the Penstock

  • Chen, Changkun;Nicolet, Christophe;Yonezawa, Koichi;Farhat, Mohamed;Avellan, Francois;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.3
    • /
    • pp.260-268
    • /
    • 2009
  • The effects of acoustic modes in the penstock on the self-excited oscillation in hydraulic power system were studied by assuming a finite sound velocity in the penstock. The flow in the draft tube is considered to be incompressible assuming that the length of the draft tube is smaller than the wavelength of the oscillation. It was found that various acoustic modes in the penstock can become unstable (amplified) by the diffuser effect of the draft tube or the effect of swirl flow from the runner. Their effects on each mode are discussed.

Improvement of a Hydraulic Circuit for an Electro-Hydrostatic Actuator Equipped with a Single Rod Cylinder (편로드 실린더 구동 EHA의 유압 회로 개선)

  • Hong, Yeh-Sun;Kim, Sang-Seok;Kim, Dae-Hyun;Kim, Sang-Beom;Park, Sang-Joon;Choi, Kwan-Ho
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • The conventional hydraulic circuits for electro-hydrostatic actuators equipped with a single-rod cylinder can oscillate under overrunning load conditions. In this paper the oscillation problem encountered in the conventional hydraulic circuits for EHAs is analyzed and it is shown by simulation results that this problem can be solved by employing a counter balance valve instead of a pilot-operated check valve generally used in the conventional hydraulic circuits.

Stick-Slip Oscillation of Hydraulic Telescopic Boom

  • Baek, Il-Hyun;Jung, Jae-Youn;Song, Kyu-Keun;Kim, Shin
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.377-378
    • /
    • 2002
  • In many dynamic systems, unwanted vibrations which may arise during operation of machines are costly in terms of reduction of performance and service life. Sometimes these risky oscillations endanger equipment and personnel. When hydraulic telescopic booms taken large mass are driven at slow speeds between the two pads, unstable oscillations occur through the stick-slip at the sliding parts and become more severe and saw-toothed. This paper supposes few models for the telescopic boom in the multi-degree of freedom system, and attempts a theoretical approach for the numerical analysis in its stick-slip condition, It was verified that this theoretical approach has an effect on estimate of stick-slip in the one-degree as well as multi-degree of freedom system.

  • PDF

Behavior analysis on stick-slip of hydraulic telescopic boom (유압 텔레스코픽 붐의 스틱-슬립에 대한 거동해석)

  • Baek, Il-Hyun;Jung, Jae-Youn;Kim, Shin
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.296-303
    • /
    • 2002
  • Tribology, in other words, interacting surfaces in relative motion, is essential in life. The relative motion on surfaces may cause some problems with heat, vibration, noise, and so on. Unwanted vibrations by friction, which may arise during the operation of machines, are costly in terms of reduction of performance and service life. All these phenomena inolve stick-slip. The telescopic boom operations involves stick-slip oscillations like slideways. Unwanted stick-slip oscillations on telescopic boom operations cannot achieve smooth sliding and many developers of that machine makes a lot of effort to remove or reduce it. So this paper presents stick-slip oscillation with pressure of the hydraulic cylinder which drives booms, and attempts a theoretical approach for the numerical analysis for its stick-slip condition.

  • PDF

Motion Control of Servo Cylinder Using Neural Network (신경회로망을 이용한 서보 실린더의 운동제어)

  • Hwang, Un-Kyoo;Cho, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.955-960
    • /
    • 2004
  • In this paper, a neural network controller that can be implemented in parallel with a PD controller is suggested for motion control of a hydraulic servo cylinder. By applying a self-excited oscillation method, the system design parameters of open loop transfer function of servo cylinder system are identified. Based on system design parameters, the PD gains are determined for the desired closed loop characteristics. The Neural Network is incorporated with PD control in order to compensate the inherent nonlinearities of hydraulic servo system. As an application example, a motion control using PD-NN has been performed and proved its superior performance by comparing with that of a PD control.