• Title/Summary/Keyword: Hydraulic machine

Search Result 340, Processing Time 0.026 seconds

Analysis of Flow Characteristics of Supercavitating Cascade (수퍼캐비테이션 익열의 유동특성 해석)

  • 이명호;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.803-810
    • /
    • 1992
  • With increases in the rotational speed of hydraulic machine, studies on the hydrodynamic characteristics of supercavitating cascade are important on the view of flow analysis and design of fluid machinery. In the present paper, the complex functions of nonlinear theory corresponding to the flow of supercavitating cascade can be obtained by distributing singulary singulary points such as sources, vortexes and doublets on hydrofoil and free streamline. The numerical calculations on the closed wake model and semi-closed wake model are carried out in order to show the flow characteristics around the supecavitating cascade with finite with finite cavity length. As the result of this study, the flow characteristics such as lift, drag and cavitation coefficients are predicted by the flow conditions of supercavitating cascade in the fluid machinery.

A Study on the Control Characteristics of FHA by Using ERF and Industrial Controller (ERF와 산업용 콘트롤러를 이용한 FHA의 제어특성에 관한 연구)

  • Jang Sung-Cheol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.1
    • /
    • pp.95-100
    • /
    • 2005
  • Making the best use of the features of the electro-rheological(ER) valve, a two-port pressure control valve using ER fluids is proposed and manufactured. The ER-Valve characteristics are evaluated by changing the intensity of the electric field and the number of electrode. In addition, the performance of the plate type ER-Valve is investigated by change the particle concentration of the ER fluid. As only with electrical signal change to the ER-Valve in which ER fluid flowing, ER fluid flow is controlled, so development of simple ER-Valves have been tried. The ER-Valves and pressure drop check method are considered to be applied to the fluid power control system. Using the minかnぉd pressure control valve, a one-link manipulator with FHA in robot system is driven. As a result, it is experimentally confirmed that the pressure control valve using ER fluids is applicable to use in driving actuator. If it applies characteristics of the ER fluids, it will be able to apply in the control system fir the ER Valve which occurs from industrial controller(PLC).

FARE Device Operational Characteristics of Remote Controlled Fuelling Machine at Wolsong NPP

  • I. Namgung;Lee, S.K.;Kim, Y.B.
    • Nuclear Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.468-481
    • /
    • 2002
  • There are 4 CANDU6 type reactors operating at Wolsong site. For fuelling operation of certain fuel channels (with flow less than 21.5 kg/s) a FARE flow Assist Ram Extension) device is used. During the refuelling operation, two remote controlled F/Ms (Fuelling Machines) are attached to a designated fuel channel and carry out refuelling job. The upstream F/M inserts new fuel bundles into the fuel channel while the downstream F/M discharges spent fuel bundles. In order to assist fuelling operation of channels that has lower coolant How rate, the FARE device is used instead of F/M C-ram to push the fuel bundle string. The FARE device is essentially a How restricting element that produces enough drag force to push the fuel bundle string toward downstream F/M. Channels that require the use of FARE device for refuelling are located along the outside perimeter of reactor. This paper presents the FARE device design feature, steady state hydraulic and operational characteristics and behavior of the device when coupled with fuel bundle string during fuelling operation. The study showed that the steady state performance of FARE device meets the design objective that was confirmed by downstream F/M C-ram force to be positive.

Development of In-Line Trimming Shear (In-Line Trimming Shear 개발)

  • 이종일;강성구;서경수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.119-125
    • /
    • 1999
  • At Wire Rod Mill Plant, wire is made of the billet produced at continuous casting machine, or rolled bloom produced at billeting mill, and the product can be classified of wire of 5.5${\Phi}$ and bar in coil of 14∼42${\Phi}$ in diameter(bar in coil will be referred to as coil as below). At present, wire is produced at POSCO No.1, 2, 3 WRM, coil at garret line of No. 2 WRM. Head and tail of coil are properly cut and treated to scrap to fulfill the customer's satisfaction. This above cutting is done off line, and small size coil can be cut manually with clipper, large size coil with hydraulic cutter. Nowadays, it is being investigated to cut automatically in line with trimming shear after passing mill stand. At the moment, Because the coil produced at the garret line of No.2 WRM is hot 400∼600$^{\circ}C$ and trimming is done manually with cutter, there are always interference from manual operation or safety problem of bad working condition. Not only because of the diversity of the coil size 14∼42${\Phi}$ in diameter, but because of the rolling speed 2.5∼22m/sec, it is required to be equipped with several trimming shear. But this can be accomplished with only one shear installed proper place at this paper.

  • PDF

Efficiency Improvement of Switched Reluctance Generator According to Current Shape in the High Speed Region (고속영역에서 전류형상에 따른 스위치드 릴럭턴스 발전기의 효율 개선)

  • Ahn, Jin-Woo;An, Young-Joo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.68-74
    • /
    • 2015
  • This paper describes about the efficiency improvement of switched reluctance generator (SRG) over the rated speed region. Since the current shape has a great influence on the loss of the machine, so the system efficiency can be improved by optimizing the current shape. In case the wide speed range application such as wind power and medium size hydraulic power generation, a method of switching angle control is suggested to obtain the wanted current shapes. In order to verify the method, the experimental platform is set up. The feasibility of the theory is verified by simulation and experimental results.

Development of the Flexible Observation System for a Virtual Reality Excavator Using the Head Tracking System (헤드 트래킹 시스템을 이용한 가상 굴삭기의 편의 관측 시스템 개발)

  • Le, Q.H.;Jeong, Y.M.;Nguyen, C.T.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.12 no.2
    • /
    • pp.27-33
    • /
    • 2015
  • Excavators are versatile earthmoving equipment that are used in civil engineering, hydraulic engineering, grading and landscaping, pipeline construction and mining. Effective operator training is essential to ensure safe and efficient operating of the machine. The virtual reality excavator based on simulation using conventional large size monitors is limited by the inability to provide a realistic real world training experience. We proposed a flexible observation method with a head tracking system to improve user feeling and sensation when operating a virtual reality excavator. First, an excavation simulator is designed by combining an excavator SimMechanics model and the virtual world. Second, a head mounted display (HMD) device is presented to replace the cumbersome large screens. Moreover, an Inertial Measurement Unit (IMU) sensor is mounted to the HMD for tracking the movement of the operator's head. These signals consequently change the virtual viewpoint of the virtual reality excavator. Simulation results were used to analyze the performance of the proposed system.

The Tensile Characteristics of Carbon and Silica Reinforced Composites Under Elevated Temperature (카본 및 실리카 강화 복합재료의 고온 인장 특성 평가)

  • 김종환;김재훈
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.49-57
    • /
    • 2003
  • This paper presents the tensile characteristics for carbon/epoxy, carbon/phenolic and silica/phenolic composites under elevated temperature, which are considered for vehicle structure or thermal protection materials. The tensile test was conducted with servo-hydraulic testing machine and high temperature furnace, and the mechanical properties such as tensile strength, elastic modulus and Poisson's ratio were evaluated by using high temperature strain gages. Also, they were compared each other with respect to fiber orientation and temperature effect. These test results were used for designing and analyzing some airframe structures with these composites.

Prediction of Shape Recovery for Ni-Ti SMA Wire after Drawing (Ni-Ti 형상기억합금 선재의 인발 공정 후 형상회복 예측에 관한 연구)

  • Kim, S.H.;Lee, K.H.;Lee, S.B.;Yeom, J.T.;Park, C.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.470-476
    • /
    • 2013
  • The aim of the current study was to predict shape recovery behavior of Ni-Ti shape memory alloy (SMA) wire after loading-unloading and after wire drawing. The superelasticity of SMA was analyzed by a hyper-elastic model for the Mullins effect using ABAQUS. Firstly, tensile tests and loading-unloading tests of the Ni-Ti SMA wire with a diameter 1.0 mm were performed using an MTS servo-hydraulic tester. The parameters for the Mullins effect were computed by ABAQUS based on curve-fitting of the loading-unloading test data. The proposed FE-model predicted the shape recovery of Ni-Ti SMA after wire drawing. Finally, the effectiveness of the model was verified by drawing experiments. The wire drawing experiments using the Ni-Ti SMA were conducted on a drawing machine(1ton, 50mm/s). In order to evaluate the shape recovery of Ni-Ti SMA, the drawn wires are annealed for 30min at $450^{\circ}C$.

Design and Analysis of Column Type Sensing Element for Large Compact Load Cell (대용량 Compact형 로드셀의 기둥형 감지부 설계 및 해석)

  • Kang, Dae-Im;Shin, Hong-Ho;Kim, Jong-Ho;Park, Yon-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.601-607
    • /
    • 2003
  • The column type is used as the sensing element of the load cell to measure the large force in the range of 10$^4$~ 10$^{7}$ N. However. it is not easy to handle the load with large capacity due to its size. It is, therefore, necessary to design a compact load cell with a low aspect ratio. Thus this paper showed the characteristic evaluation of compact load cell with respect to the shape of supporting plate. The supporting plate of the load cell was an annular type with inner(D$_{i}$) and outer(D$_{o}$) diameters. Using the strain distribution obtained from FEM. the supporting plate was designed to get the stable output voltage of the load cell. The three designed supporting plates were manufactured, and the result of characteristic experiment of the load cell, using the 10 MN hydraulic force standard machine, was compared with FEM.M.M.

Introduction of Vibration Evaluation for APR 1400 Reactor Coolant Pump Shaft (APR 1400급 원자로냉각재펌프의 회전체 진동평가에 관한 고찰)

  • Kim, Ik Joong;Lim, Do Hyun;Kim, Min Chul;Bang, Sang Youn
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.110-115
    • /
    • 2014
  • The nuclear power plant was launched by Kori unit 1 in 1978 years. Currently, 23 nuclear power plants have been operating in Korea since 1978 years. The localization was completed for most of the reactor facility from Hanbit(Youngkwang) unit 3&4. However, RCP(Reactor Coolant Pump) and MMIS(Man Machine Interface System) is an important technology that has been excluded from the scope of the technical transfer has been dependent on a specific overseas vendor. Recent success in RCP development through co-operation with government and industries. Developed RCP will be applied to Shin-Hanul unit 1&2 nuclear power plants. The RCP operates in high speed and high pressure condition and only rotating component in the NSSS(Nuclear Steam Supply System). Therefore, the problem of vibration has arisen caused by the hydraulic forces of the working fluid. These forces can influence on the stability characteristics for entire RCS(Reactor Coolant System) loop, and can act as significant destabilizing forces. In this study, vibration evaluation of the pump shaft of development RCP estimated under normal operation and over speed conditions. In order to predict the vibration characteristics and dynamic behavior, modal analysis, critical speed analysis and unbalance response spectrum analysis were performed.

  • PDF