• Title/Summary/Keyword: Hydraulic design sprinkler systems

Search Result 4, Processing Time 0.015 seconds

A Development of Program on the Hydraulic Calculation in Sprinkler System Based on the Piping Network Analysis Method (배관망 해석 방법을 이용한 스프링클러 시스템의 수리계산 프로그램 개발)

  • 송철강;이명호;강계명
    • Fire Science and Engineering
    • /
    • v.16 no.1
    • /
    • pp.24-29
    • /
    • 2002
  • The purpose of this study is developing the computer program for hydraulic design sprinkler systems have performed the means for the general use of network analysis method. The computer program is based on the theoretical concepts of the related Hazen-Williams equations, a modified Bernoulli equations, and the Hardy Cross method of pipe network analysis. Looped piping calculations are solved by using either the Hardy Cross method or the other iteration methods. While the other methods are solved using simultaneous equations, the Hardy Cross method is concerned with one loop at a time using reiterative process. Due to its simplicity the Hardy Cross method will be the primary method described in this thesis. The purpose of this study is to develope hydraulic calculation program by using algorithm for network analysis method. The development of computer program for the hydraulic design of sprinkler systems will perform the means in the performance-based sprinkler system design.

An Improvement Study on National Fire Safety Code of Sprinkler System for Hydraulic Calculation Application (수리계산 적용을 위한 스프링클러설비의 화재안전기준 개선방안 연구)

  • Lee, Keun-Oh;Kang, Joo-Hyeong
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.1 s.79
    • /
    • pp.7-12
    • /
    • 2007
  • There are two kinds of design process for sprinkler system. one is pipe schedule system and the other is hydraulically designed system. We have inefficient results when we design by hydraulically designed system because the design process for sprinkler system is restricted by domestic fire code. Therefore, it is essential to do an introduction of hydraulically designed system which is based on engineering for enhancing reliability and efficiency of sprinkler system. This study presents points at issue by comparing and studying design standards of sprinkler system from Korea, Japan and NFPA, and presents improvement plans of national fire safety code of sprinkler system by processing, comparing and analyzing designs according to piping schedule and hydraulically designed system about domestic objects. Installation standards of sprinkler system have to be applied not by object buildings but by hazard classification. It is hard to design an efficient sprinkler system for fire control when water supply requirement of sprinkler systems allocated according to a size of a building because the same purpose but other buildings may request more water requirement or less. We should sublate the pipe schedule system from national fire safety code and need to introduce the hydraulically designed system. The pipe schedule system presents easy access because it is based on the forecasted engineering calculations but it is applied to only small buildings like NFPA due to its low reliability.

A Presentation on the Manual Hydraulic Calculation Method of the Loop Type Fire Sprinkler System (Loop형 스프링클러 설비의 수리계산 방법에 대한 제시)

  • Jeong, Keesin
    • Fire Science and Engineering
    • /
    • v.29 no.1
    • /
    • pp.73-79
    • /
    • 2015
  • There are three kinds of design method of the fire sprinkler systems. Grid type is connected all branch as a trapezoid. Loop type is connected cross-mains like circle. The last one is a tree type most commonly used. Grid type needs computer program to calculate the friction loss and flow rate apart from very simple form. In loop type, manual calculation is possible. Design engineer can draw up and calculate the demands without computer program. Because water supplies two direction in loop type, friction loss is smaller than tree type. Water distribution in operation area is uniform because of the small differences of sprinklers discharge pressure. Loop type is superior to tree type in respect of total pressure and flow rate. Using the small diameter pipe, the labor and construction cost will be decreased in the end. Loop type sprinkler design is rarely laid out because design engineers don't know the method. This paper is intended to inform that the loop type is better than the tree type in performance and economic point of view. And also this paper intend to use the loop type easily and widely.

A Study on the Application of Hydraulic Calculations considering the Corrosion Coefficient of Steel Piping for Fire Protection (소방용 강관배관 부식계수를 고려한 수리계산 적용방안에 관한 연구)

  • Mun, Chul-Hwan;Kang, Ho-Jung;Choi, Jae-Wook
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.69-77
    • /
    • 2020
  • With the recent enlargement and complication of buildings, damage caused by the incidents of fires breaking out are escalating. Consequently, the use of sprinkler facilities is increasing among water-based fire extinguishing systems. Piping materials used in fire prevention systems include carbon steel (for general or pressure pipeline), CPVC, copper, and stainless-steel. Among these, the steel and CPVC pipes, which are commonly employed in fire prevention, were considered for testing the reliability of the water-based systems. This analysis was performed using the PIPENET software to perform hydraulic calculations in order to examine the flow and pressure at the terminal head when the corrosion coefficient was applied; this coefficient was applied considering the aging of pipes. Assuming a uniform pipe diameter in the steel pipes, the rated flow in the pump installed on the first floor of the basement was reduced by over 10% after 20 years had passed (C value of 90); moreover, the reduction in pressure and flow at its terminal head exceeded 30% and 16.5%, respectively. The results indicate that it is difficult to ensure the reliability of these fire prevention facilities. Furthermore, according to our estimation, considering 30 years had passed (C value of 80), the rated flow of the pump was reduced by over 15%, and the corresponding reduction in pressure and flow at its terminal head exceeded 42% and 24%, respectively.