• Title/Summary/Keyword: Hydraulic control unit

검색결과 115건 처리시간 0.029초

Development of Energy Regeneration Algorithm using Electro-Hydraulic Braking Module for Hybrid Electric Vehicles (회생제동 전자제어 유압모듈을 이용한 하이브리드 차량의 에너지 회수 알고리즘 개발)

  • Yeo, H.;Kim, H.S.;Hwang, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • 제5권4호
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, an energy regeneration algorithm is proposed to make the maximum use of the regenerative braking energy for a parallel hybrid electric vehicle(HEV) equipped with a continuous variable transmission(CVT). The regenerative algorithm is developed by considering the battery state of charge(SOC), vehicle velocity and motor capacity. The hydraulic module consists of a reducing valve and a power unit to supply the front wheel brake pressure according to the control algorithm. In order to evaluate the performance of the regenerative braking algorithm and the hydraulic module, a hardware-in-the-loop simulation (HILS) is performed. In the HILS system, the brake system consists of four wheel brakes and the hydraulic module. Dynamic characteristics of the HEV are simulated using an HEV simulator. In the HEV simulator, each element of the HEV powertrain such as internal combustion engine, motor, battery and CVT is modelled using MATLAB/$Simulink^{(R)}$. In the HILS, a driver operates the brake pedal with his or her foot while the vehicle speed is displayed on the monitor in real time. It is found from the HILS that the regenerative braking algorithm and the hydraulic module suggested in this paper provide a satisfactory braking performance in tracking the driving schedule and maintaining the battery state of charge.

  • PDF

Trajectory Control of Excavator Actuators Using IMV (IMV를 이용한 굴착기 작업장치 궤적제어)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • 제17권2호
    • /
    • pp.45-54
    • /
    • 2020
  • The IMV is a combination of four two-way valve systems which replace a conventional four-way spool valve to improve efficiency mostly in excavator hydraulics. As the environmental regulations for construction equipment have tightened, some overseas advanced companies have released commercial excavators in which the MCV is implemented with the IMVs. Development of the IMV type MCV relies on the control algorithm as well as the robust performance of proportional flow control valves. In this study, the IMV controller was designed and verified with experiments for the excavator working unit, which determines the IMV mode of operation and the extent of the valve opening in consideration of the load conditions on hydraulic actuators. First, the open-loop controller was designed with a joystick command vs. a PSV reference current map comprising several control parameters in to compensate for the different flow characteristics and non-linearities of two-way flow control valves. Second, the closed-loop controller was designed with the PI control fed by the actuator displacement and outputs actuator percent effort equivalent to the operator's joystick command. Finally, the performance of the IMV type MCV was verified with the trajectory control of position references derived from the energy consumption test standard. Experimental results showed the control performance of the IMV developed in this study, and suggest that future studies to be conducted to advance technical progress.

Developing Analysis Model of Hydraulic System for Dental Chair (치과용 유니트체어 유압구동 시스템 해석모델 개발)

  • Dae Kyung Noh;Dong Won Lee;Taek June Kim;Joo Sup Jang
    • Journal of Drive and Control
    • /
    • 제20권1호
    • /
    • pp.27-33
    • /
    • 2023
  • From the perspective of dental chair manufacturers, it is important to of localizing hydraulic system in order to secure market competitiveness. This study aims to develop the analysis model of a dental chair which overseas companies secure core technologies. The study follows the steps below. First, the component parts of the solenoid valve unit of a foreign leading company are analyzed and implemented in virtual environment. Second, dynamic behavior scenario is established based on solenoid valve signal chart provided by a foreign leading company. The analysis model is verified and its performance is analyzed using dynamic behavior according to each scenario. Third, a simulation is carried out to determine whether the cylinder velocity of designed hydraulic system surpasses 1cm/s as required by the design.

Comparison Analysis of Dynamic Characteristics of Servo-hydraulic Piezo-driven Injector between 3-way and Bypass-circuit Type (3-way형과 Bypass형 서보유압 피에조 인젝터의 구동특성 비교)

  • Jo, Insu;Jeong, Myoungchul;Lee, Jinwook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제21권5호
    • /
    • pp.169-175
    • /
    • 2013
  • CRDi technology of diesel engine was developed from in the early 2000s due to a need to increase fuel efficiency and environment care. Especially, high-pressure fuel injection system in CRDi system which has a fuel injection unit including an injector, a fuel pump and common-rail, etc. becomes possible to make the exhaust gas clean as well as power improvement. In this study, comparison of dynamic characteristics of servo-hydraulic piezo-driven injector with 3-way and bypass-circuit type was analyzed by using the AMESim code. As results of this study, it found the bypass-circuit inside servo-hydraulic piezo injector can cause a faster injection response than that of the 3-way type. Also it was shown that bypass-circuit type had better control capability due to hydraulic bypass system.

Co-Simulation Technology Development with Electric Power Steering System and Full Vehicle (전동 조향 장치와 차량의 동시 시뮬레이션 기술 개발)

  • 장봉춘;소상균
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제21권1호
    • /
    • pp.94-100
    • /
    • 2004
  • Most power steering systems obtain the power by a hydraulic mechanism. Therefore, it consumes more energy because the oil power should be sustained all the times. Recently, to solve this problem the electric power system has been developed and become widely equipped in passenger vehicles. In this research the simulation integration technique for an electric power steering system with MATLAB/SIMULINK and a full vehicle model with ADAMS has been developed. A full vehicle model interacted with electronic control unit algorithm is concurrently simulated with an impulsive steering wheel torque input. The dynamic responses of vehicle chassis and steering system are evaluated. This integrated method allows engineers to reduce the prototype testing cost and to shorten the developing period.

Study on the Characteristics of Control by High Frequency ECU for Braking System (제동 시스템을 위한 고주파수 ECU의 제어 특성 연구)

  • Yeon, Kyu-Bong;Chong, Jong-Wha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제13권6호
    • /
    • pp.2428-2434
    • /
    • 2012
  • This paper describes the control of a solenoid valve of ESC(Electronic Stability Control) with hydraulic modulator in braking system. ESC ECU(Electronic Control Unit) to control the high-frequency control and slope control method was applied, the surge pressure and EMI(electromagnetic interference) reduction characteristics were studied. The stage of ECU output was added the slope shaping function to reduce electromagnetic emission at higher frequencies. Measurements show that this high frequency ECU manages to reduce the surge pressure and electromagnetic emission by the control of solenoid valve. In conclusion, by using the results of this study for the high frequency ECU control, we could expect enhancement of braking system performance.

Coupling Simulation with Multi-dimensional Models for River Flow (다차원 모형을 이용한 하천흐름 연계모의)

  • Ahn, Jung Min;Hur, Young Teck;Lyu, Siwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제33권1호
    • /
    • pp.137-147
    • /
    • 2013
  • It is essential to understand the hydraulic characteristics of rivers for increasing flood-control capacity and operating hydraulic structures efficiently. Multi-dimensional models can be the proper measures to obtain the detailed information on the hydraulic characteristics of rivers. But huge amount of data and time-consuming work have been the obstacle for applying multi-dimensional models. In this study, simulation technique with multi-dimensional model(EFDC), coupled with COSFIM and FLDWAV, has been developed and applied to the real river system for verification. Developed technique can offers spatial and grid unit information as well as line and section unit information from 1-D modeling. It is considered that the coupling simulation technique can provide useful hydraulic information for river management and treatment.

Automatic Control of Engine Speed and Transmission Ratio for Efficient Tractor Operations(I) -Control Systems for Engine Speed and Transmission Ratio- (트랙터의 기관속도(機關速度) 및 변속비(變速比)의 자동제어(自動制御)에 관(關)한 연구(硏究)(I) -기관속도(機關速度) 및 변속비(變速比) 제어(制御) 시스템-)

  • Kang, S.B.;Ryu, K.H.;Oh, K.K.
    • Journal of Biosystems Engineering
    • /
    • 제18권4호
    • /
    • pp.305-316
    • /
    • 1993
  • Fuel efficiency in tractor operations dep6nds on the selection of transmission gears and upon the engine being operated at or near maximum torque much of time. The objective of this study was to develop automatic control systems for tractor transmission ratio and governor setting so that the engine is operated at or near maximum torque as much of time as possible. An indoor test unit, which can be used to simulate tractor operation, was built in order to investigate the system design parameters and test the performance of the control system designed. The test-unit consists of engine, gear-type transmission, dynamometer, and control systems for transmission ratio and engine speed. Governor setting lever was controlled by a step motor, and the clutch and transmission levers were controlled by hydraulic cylinders and solenoid valves. The control systems showed good time responses which are assumed to be suitable for optimal tractor operation. The time required for shifting gears from clutch disengagement to engagement was about 1 second, which is almost the same as that for manual shift. And the settling time for engine speed control system was about 5 to 6 seconds.

  • PDF

Impulse Response of Electric Power Steering System (전동식 조향 시스템의 임펄스 응답 특성)

  • Pang D.Y.;Jang B.C.;Lee S.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1483-1488
    • /
    • 2005
  • As the development of microprocessor technology, electric power steering(EPS) system which uses an electric motor came to use a few years ago. It can solve the problems associated with hydraulic power steering. The motor only operates when steering assistance is needed, so it can save fuel and can reduce weight and cost by eliminating hydraulic pump and piping. As one of performance criteria of EPS systems, the transmissibility from road wheel load to steering wheel torque is considered in this paper. The transmissibility can be studied by fixing the steering wheel and calculating the torque needed to hold the steering wheel from road wheel load. A proportion-plus-derivative control is needed for EPS systems to generate desired static torque boost and avoid transmissibility of fluctuation. A pure proportion control can' satisfy both requirements.

  • PDF

Development of a Linear Chemigation System (가로주행식 케미게이션 시스템의 개발)

  • 구영모;배영환;박금주;정상옥
    • Journal of Biosystems Engineering
    • /
    • 제26권2호
    • /
    • pp.93-104
    • /
    • 2001
  • A linear chemigation system, integrating agrichemical appication units of pesticide and fertilizer into an irrigation system, was selected as a suitable model for the cost savings in farm management and automation. Technical designs were conducted in the areas of structure, power, drive, control, and hydraulic systems. An experimental farm was sectioned into the fields of 40m by 200m and systemized with the linear-move chemigation system of 36m in span. The chemigation system consisted of a base unit monitoring and controlling overall operation, and a driving unit traveling linearly and injecting agrichemicals. Monitoring and interlocking systems were utilized against unexpected malfunctions of power, injection and drive systems using radio freuency modems between the units. The system can be also modified to various farm sizes and stationary systems of indoor and outdoor.

  • PDF