• Title/Summary/Keyword: Hydraulic architecture

Search Result 189, Processing Time 0.023 seconds

Influence of Drying Methods on Measurement of Hydration Degree of Hydraulic Inorganic Materials: 2) Alkali-activated slag (수경성 무기재료의 수화도 측정에 대한 건조방법의 영향: 2) 알칼리 활성 슬래그)

  • Lee, Hyo Kyong;Song, Keum-Il;Song, Jinkyu;Kim, Hyeong-Ki
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.106-117
    • /
    • 2018
  • The present study was carried out to find a suitable drying method for the determination of non-evaporable water in hydraulic inorganic materials. In Part 1 of the paper, the case ordinary Portland cement was discussed and, in this Part 2, the case of alkali active slag (AAS) was investigated. Various drying methods including vacuum and oven drying, and an ignition, were used for the AAS system having different w/b, types and amounts of alkali activators. It was found that a combination of the vacuum and oven drying was a suitable drying method for the AAS case. Although a part of the crystallized water in hydration products was decomposed, but the free and adsorbed water could be completely evaporated and the deviation of the results was small.

Application of a Hydraulic Rock Splitting System to Bench-Cut Field Experiments (수압암반절개시스템을 이용한 벤치컷 현장 적용 사례 연구)

  • Park, Jong Oh;Woo, Ik
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.725-733
    • /
    • 2022
  • This study applied a hydraulic rock splitting system equipped with a hybrid packer to the bench-cut method. The hybrid packer system is an improvement of the packer developed in previous studies; it is designed efficiently to reduce vibration and noise during rock excavation by combining the two functions of inducing hydraulic fractures using injection pressure and then expanding and extending them using a rubber packer. Field experiments assessed the efficiency of rock excavation with respect to the injection conditions; the adjusted experimental conditions included the distance from the free surface and the test holes drilled at the top of the slope and the injection settings. Using a separation of 5 m left some unexcavated parts, but using a separation of 1 m left no unexcavated parts. The hydraulic fractures generated by the injection pressure developed generally parallel to the free surface and expanded and extended as the rubber packer expanded, thus facilitating bench-cut excavation. For hydraulic rock splitting to be broadly applicable to bench-cut rock excavation, it is important to accumulate results from many field experiments conducted under varying experimental conditions for various types of rockmass.

Planting foundations and Turfgrass Species Adapted to Grounds (스포츠 그라운드에 적합한 식재지반과 잔디 초종에 관한 연구)

  • 심상렬;정대영;김경남
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.2
    • /
    • pp.61-70
    • /
    • 2000
  • The purpose of this study is to identify the proper species of turf and the ground structure for the turf sports grounds. Analysis items are particle distribution of sand and gravel, saturated hydraulic conductivity, soil hardness, and turf growth. Results of this study are as follows. 1)The particle distribution of sand used in the multi-layer rootzone is within the upper limit of the standard level. The diameter of mid-size grain({TEX}$D_{50}${/TEX})was 0.62mm and the value of uniformity ({TEX}$D_{90}${/TEX}/{TEX}$D_{10}${/TEX}) was 3.93. The particle size distribution of sand used in the single-layer rootzone was beyond the standard level as {TEX}$D_{50}${/TEX})=0.86 and {TEX}$D_{90}${/TEX}/{TEX}$D_{10}${/TEX}=8.86. 2) Saturated hydraulic conductivity of the sand was higher in the multi-layer rootzone than in the single-layer rootzone while bulk density was vice versa. 3) Surface hardness was high on Kentucky bluegrass+perennial ryegrass compared to zoysiagrass probably caused by root density. 4) Visual covering and visual rating were highly evaluated on zoysiagrass within summer while better evaluated on Kentucky bluegrass+perennial ryegrass throughout fall to spring. 5) Visual color was better evaluated on Kentucky bluegrass+perennial ryegrass than on zoysiagrass throughout the year. These studies are demanded urgently according to increase in interest in the ground and turf species of the turf sports ground because of World Cup 2002.

  • PDF

Changes in Physical Properties of Dredged Soils by Drying (건조에 의한 준설 매립 지반에 물리적 특성변화)

  • Yonn Yong-Han;Kim Won-Tae
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.2 s.115
    • /
    • pp.36-43
    • /
    • 2006
  • This study was carried out to determine the ways in which drying improves and develops dredged soils which exist widely in the lowlands of Korea. Before drying there were large variations in the fundamental physico-chemical properties of dredged soils collected from different places. In the sample soils, saturated hydraulic conductivity decreased gradually with an increase in bulk density with the exception that in air-dried soils a reverse trend was observed. Also in the sample soils, the sedimentation volume and the consistency limits decreased gradually with the decrease in soil water content after the air-drying treatment. The porosity of the sample soils decreased from $0.67{\sim}0.87m^3/m^3\;to\;0.58{\sim}0.66m^3/m^3$ and the liquid-phase range decreased from $0.41{\sim}0.83m^3/m^3\;to\;0.29{\sim}0.71m^3/m^3$. The solid-phase range of sample soils increased $0.13{\sim}0.33m^3/m^3\;to\;0.24{\sim}0.37m^3/m^3$ same as above with air-drying treatment. In conclusion the air-drying treatment caused an irreversible effect on some physical properties. Accordingly, these facts indicate that the effects of air-drying treatment on these properties are considered to be resulted from irreversible changes in the structural status of the sample soils.

An Experimental Study on Compressibility Effect in Sloshing Phenomenon (압축성이 슬로싱 현상에 미치는 영향에 관한 실험적 연구)

  • Park, Jun-Soo;Kim, Hyun-Yi;Lee, Ki-Hyun;Kwon, Sun-Hong;Jeon, Soo-Sung;Jung, Byoung-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.12-18
    • /
    • 2009
  • The present study focused on the compressibility of partially filled fluids in a sloshing tank. Filling ratios ranging from 18% to 26% were used to find compressible impact on a vertical wall. The model test was for 1/25 scale of a 138 K LNGC cargo tank. To investigate the two dimensional phenomenon of sloshing, a longitudinal slice model was tested. A high speed camera was used to capture the flow field, as well as the air pocket deformation. The pressure time history synchronized with the video images revealed the entire compressible process. Three typical impact phenomena were observed: hydraulic jump, flip through, and plunging breaker. In particular, the pressure time history and flow pattern details for flip through and plunging breaker are presented.

Extraction of optimal time-varying mean of non-stationary wind speeds based on empirical mode decomposition

  • Cai, Kang;Li, Xiao;Zhi, Lun-hai;Han, Xu-liang
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.355-368
    • /
    • 2021
  • The time-varying mean (TVM) component of non-stationary wind speeds is commonly extracted utilizing empirical mode decomposition (EMD) in practice, whereas the accuracy of the extracted TVM is difficult to be quantified. To deal with this problem, this paper proposes an approach to identify and extract the optimal TVM from several TVM results obtained by the EMD. It is suggested that the optimal TVM of a 10-min time history of wind speeds should meet both the following conditions: (1) the probability density function (PDF) of fluctuating wind component agrees well with the modified Gaussian function (MGF). At this stage, a coefficient p is newly defined as an evaluation index to quantify the correlation between PDF and MGF. The smaller the p is, the better the derived TVM is; (2) the number of local maxima of obtained optimal TVM within a 10-min time interval is less than 6. The proposed approach is validated by a numerical example, and it is also adopted to extract the optimal TVM from the field measurement records of wind speeds collected during a sandstorm event.

A Comparative Study on the Impermeability-reinforcement Performance of Old Reservoir from Injection and Deep Mixing Method through Laboratory Model Test (실내모형시험을 통한 지반혼합 및 주입공법의 노후저수지 차수 보강성능 비교 연구)

  • Song, Sang-Huwon
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.24 no.2
    • /
    • pp.45-52
    • /
    • 2022
  • Of the 17,106 domestic reservoirs(as of December 2020), 14,611 are older than 50 years, and these old reservoirs will gradually increase over time. The injection grouting method is most applied to the reinforcement method of the aging reservoir. However, the injection grouting method is not accurate in uniformity and reinforced area. An laboratory model test was conducted to evaluate the applicability of the deep mixing method, which compensated for these shortcomings, as a reservoir reinforcement method. As a result of calculating the hydraulic conductiveity for each method through the model test results, the injection grouting method was calculated as a hydraulic conductiveity value that was about 7.5 times larger than that of the deep mixing method. As a result of measuring the water level change in the laboratory model test, it was found that the water level change decreased in the injection method and deep mixing method compared to the non-reinforcement method. In addition, deep mixing method showed a water level change of about 15% based on 40 hours compared to the injection method, indicating that the water-reducing effect was superior to that of the injection method.

Hydraulic Analysis Using a Two-Dimensional Model(I) : Flow Analysis around Bridge Piers with Pier Shapes (2차원 모형을 이용한 수리해석(I) : 교각형상별 주변부 흐름해석)

  • Kim, Eung-seok;Lee, Seung-hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4936-4941
    • /
    • 2015
  • This study(I) has analyzed hydraulic characteristics with pier shapes by the bridge construction. The pier shapes are classified into total six types such as square, rhombus, octagon, oval, round, and no-piers. One-dimensional model(HEC-RAS) and two-dimensional model (RMA-2) were employed to analyze hydraulic characteristics around bridge piers. Square and rhombus shapes of piers showed velocity vectors in the upstream direction, which has a significant impact on the river bed changes by erosion and sediment transport around the piers. The flow characteristics of the oval type pier was most similar to that of no-pier situation almost without disrupting the river flow. This analysis can help to select pier types in the new bridge construction for the future.

Hydraulic Analysis Using a Two-Dimensional Model(II) : Bridge Backwater Analysis (2차원 모형을 이용한 수리해석(II) : 배수위 흐름해석)

  • Kim, Eung-seok;Lee, Seung-hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5716-5720
    • /
    • 2015
  • This study has analyzed the backwater effect by the bridge pier on the basis of the result on hydraulic characteristics with pier shapes in study(I), using a two-dimensional model(RMA-2) and an one-dimensional model(HEC-RAS). The pier shapes are classified into total six types such as square, rhombus, octagon, oval, round, and no-piers. The result of the backwater effect analysis showed that the backwater length is about 150 and 50m from HEC-RAS and RMA-2, respectively for all pier types. Although it is difficult to directly compare between results from the two models, the oval shape pier has shown similar results to the no-pier situation before the bridge construction in hydraulic characteristics. This analysis can help to select pier types in the new bridge construction for the future.

The Effects of Soil Particle Composition on Soil Physical Properties and the Growth of Woody Plants (토양의 입도조성이 토양의 물리성 및 목본식물의 생장에 미치는 영향)

  • 이소정;김민수
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.25 no.2
    • /
    • pp.54-61
    • /
    • 1997
  • This study has conducted to analyze the crelationship among soil properties and to investigate how they affect soil physical characteristics and plant growth. The experiment of woody plant growth was conducted as follows : Type I was the original soil. Type II, the soil particles smaller than 20${\mu}{\textrm}{m}$ was removed from the original soil. Type III, the soil particles is smaller than 75${\mu}{\textrm}{m}$ was removed from original soil. Wisteria floribunda A.P.DC and Celtis sinensisi Pers. were used for plant growth measurement. 1. Soil type II. the closest to Fuller's curved line, showed high dry bulk density and low in soil pores and saturated hydraulic conductivities. This created poor soil aeration and limited space for the root to growth. When the root did not have sufficient space to grow, there was a lot of physical stress, which hindered the root growth. 2. Soil typeIII was high saturated hydraulic conductivity and a lot of soil pores larger than 10 ${\mu}{\textrm}{m}$. As a result, there were more available spaces for root to spread. It was considered that there was less physical stress for root growth. Therefore, soil typeIII showed significantly greater root growth. 3. Because soil type III has less small particles and saturated hydraulic conductivity was high, and water infiltrates rapidly into the underground when there was rainfall or irrigation. The soil typeIII becomes much stronger soil mechanically due to the less small particles. Therefore, soil typeIII was a suitable material for applying on planting sites where soil compaction is expected.

  • PDF