• Title/Summary/Keyword: Hydraulic Stiffness

Search Result 107, Processing Time 0.024 seconds

Reliability Test and Evaluation of Air Spring for Railway Vehicle (철도차량용 공기스프링 신뢰성 시험 및 평가)

  • Woo Changsu;Kim Wandoo;Lee Hakjoo;Jeong Sungil
    • Journal of Applied Reliability
    • /
    • v.5 no.1
    • /
    • pp.149-165
    • /
    • 2005
  • Air spring system was accepted for railway vehicle secondary suspension to reduce and absorb the vibration and noise. The low natural frequency ensures a comfortable ride and an invariably good stiffness. In this paper, the characteristics and durability test was conducted in laboratory by using servo-hydraulic fatigue testing system to reliability evaluation of air spring for electric railway vehicle. The experimental results show that the characteristics and durability of domestic development productions are obtained the good results. And to guarantee the adaption of air spring, the ride comfort and air pressure variation were measured in train test on subway line.

  • PDF

Reliability Evaluation of Air Spring for Railway Vehicle (철도차량용 공기스프링의 신뢰성 평가)

  • 김완두;우창수;최경진
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.807-819
    • /
    • 2002
  • The air spring is used in secondary suspension system for railway vehicle to reduce and absorb the vibration and noise. In this paper, the characteristics and durability test was conducted in laboratory by using servo hydraulic fatigue testing system to evaluate the reliability. And to guarantee the adaptation of this air spring, the ride comfort and air pressure variation were measured in train test. The experimental results show that the characteristics and durability of domestic development productions are obtained the good results and the stiffness of the air spring which had become 6 year over increased. Also, the dynamic characteristics of domestic and existing product agree well the results obtained.

  • PDF

LRB-based Hybrid Base Isolation Systems for Seismically Excited Cable-Stayed Bridges (지진하중을 받는 사장교를 위한 LRB-기반 복합 기초격리 시스템)

  • 정형조;박규식;이헌재;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.527-534
    • /
    • 2003
  • This paper presents the LRB-based hybrid base isolation systems employing additional active/semiactive control devices for seismic protection of cable-stayed bridges by examining the ASCE first generation benchmark problem for a cable-stayed bridge. In this study, ideal hydraulic actuators (HAs) and ideal magnetorheological dampers (MRDs) are considered as additional active and semiactive control devices, respectively. Numerical simulation results show that all the hybrid base isolation systems are effective in reducing the structural responses of the benchmark cable-stayed bridge under the historical earthquakes considered. The simulation results also demonstrate that the hybrid base isolation system employing semiactive MRBs is robust to the stiffness uncertainty of the structure, while the hybrid system with active HAs is not. Therefore, the LRB-based hybrid base isolation system employing MRDs could be more appropriate in real applications for full-scale civil infrastructures.

  • PDF

Stregthenting of Concrete Structures Using Polymer Resins (폴리머를 이용한 콘크리트 구조물의 강도증진)

  • 변근주;김영진;이상민;김정훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.158-161
    • /
    • 1991
  • By applying the newly developed techniques of polymer impregnated concrete (PIC) severely deteriorated and low quality concrete can be restored to an adequate structural material. Early deterioration of concrete causes severe problems for bridge deck concrete, pavement concrete for highways and airports, hydraulic structures and buiilding structures. Deterioration has its orgin in cracks on concrete surface, scaling of spalling due to freezing and thawing, neutralization of concrete, penetrations of water, salt, and calcium chloride. The objective of this study is to develope the new surface impregnants and strengthening techniques for them. It is found that the new impregnants and strengthening techniques developed in this study can retian the charecteristics of the existing concrete and decrease deterioration, and also increase durability, chemical resistance, strength, stiffness and ductility of the existing concrete.

  • PDF

Vibration Control of Engine Mount Utilizing Smart Materials (지능재료를 이용한 엔진 마운트의 진동제어)

  • Song, Hyun-Jeong;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.297-300
    • /
    • 2005
  • This paper presents vibration control of an engine mount for a passenger vehicle utilizing ER fluid and piezoelectric actuator. The proposed engine mount can be isolated the vibration of wide frequency range with many types of amplitude. The main function of ER fluid is to attenuate vibration for low frequency with large amplitude, while the piezoelectric actuator is activated in hish frequency range with small amplitude. A mathematical model of the engine mount is derived using Hydraulic model and mechanical model. After formulating the governing equation of motion, then field-dependent dynamic stiffness of the engine mount is evaluated for various engine speed and excitation amplitude conditions. Then robust controller is designed to attenuate vibration of wide range frequency component. Computer simulation is undertaken in order to evaluate the vibration control performance such as transmissibility magnitude in frequency domains.

  • PDF

A Method for the Analysis of Train/Slab-Track Interaction on Settled Roadbed (슬래브궤도 노반침하구간 차량/궤도 상호작용 해석기법 개발)

  • Yang, Sin-Chu;Hong, Chul-Kee
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.3 s.40
    • /
    • pp.296-305
    • /
    • 2007
  • A numerical method for the analysis of train/slab-track interaction on the settled roadbed is developed based on the already developed analysis method of train/ballast-track interaction. The concrete slabs composed of the upper track concrete layer and the lower hydraulic bonded layer are modelled by a equivalent beam. The supporting stiffness of roadbed is evaluated with the modified boussinesq method suggested by Eisenmann. The track irregularity and the gap between slab and roadbed induced by settlement of roadbed are calculated by the effective method newly presented in this study. The validation of the developed method is investigated by a numerical example. The effects of train speed on train and slab track on the settled roadbed with sinusoidal shape of wave length 20m and amplitude 20mm are reviewed.

Seismic behavior of K-type eccentrically braced frames with high strength steel based on PBSD method

  • Li, Shen;Wang, Chao-yu;Li, Xiao-lei;Jian, Zheng;Tian, Jian-bo
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.667-685
    • /
    • 2018
  • In eccentrically braced steel frames (EBFs), the links are fuse members which enter inelastic phase before other structure members and dissipate the seismic energy. Based on the force-based seismic design method, damages and plastic deformations are limited to the links, and the main structure members are required tremendous sizes to ensure elastic with limited or no damage. Force-based seismic design method is very common and is found in most design codes, it is unable to determine the inelastic response of the structure and the damages of the members. Nowadays, methods of seismic design are emphasizing more on performance-based seismic design concept to have a more realistic assessment of the inelastic response of the structure. Links use ordinary steel Q345 (the nominal yielding strength $f_y{\geq}345MPa$) while other members use high strength steel (Q460 $f_y{\geq}460MPa$ or Q690 $f_y{\geq}690MPa$) in eccentrically braced frames with high strength steel combination (HSS-EBFs). The application of high strength steels brings out many advantages, including higher safety ensured by higher strength in elastic state, better economy which results from the smaller member size and structural weight as well as the corresponding welding work, and most importantly, the application of high strength steel in seismic fortification zone, which is helpful to popularize the extensive use of high strength steel. In order to comparison seismic behavior between HSS-EBFs and ordinary EBFs, on the basis of experimental study, four structures with 5, 10, 15 and 20 stories were designed by PBSD method for HSS-EBFs and ordinary EBFs. Nonlinear static and dynamic analysis is applied to all designs. The loading capacity, lateral stiffness, ductility and story drifts and failure mode under rare earthquake of the designs are compared. Analyses results indicated that HSS-EBFs have similar loading capacity with ordinary EBFs while the lateral stiffness and ductility of HSS-EBFs is lower than that of EBFs. HSS-EBFs and ordinary EBFs designed by PBSD method have the similar failure mode and story drift distribution under rare earthquake, the steel weight of HSS-EBFs is 10%-15% lower than ordinary EBFs resulting in good economic efficiency.

DYNAMIC ANALYSIS AND DESIGN CALCULATION METHODS FOR POWERTRAIN MOUNTING SYSTEMS

  • Shangguan, W.B.;Zhao, Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.731-744
    • /
    • 2007
  • A method for dynamic analysis and design calculation of a Powertrain Mounting System(PMS) including Hydraulic Engine Mounts(HEM) is developed with the aim of controlling powertrain motion and reducing low-frequency vibration in pitch and bounce modes. Here the pitch mode of the powertrain is defined as the mode rotating around the crankshaft of an engine for a transversely mounted powertrain. The powertrain is modeled as a rigid body connected to rigid ground by rubber mounts and/or HEMs. A mount is simplified as a three-dimensional spring with damping elements in its Local Coordinate System(LCS). The relation between force and displacement of each mount in its LCS is usually nonlinear and is simplified as piecewise linear in five ranges in this paper. An equation for estimating displacements of the powertrain center of gravity(C.G.) under static or quasi-static load is developed using Newton's second law, and an iterative algorithm is presented to calculate the displacements. Also an equation for analyzing the dynamic response of the powertrain under ground and engine shake excitations is derived using Newton's second law. Formulae for calculating reaction forces and displacements at each mount are presented. A generic PMS with four rubber mounts or two rubber mounts and two HEMs are used to validate the dynamic analysis and design calculation methods. Calculated displacements of the powertrain C.G. under static or quasi-static loads show that a powertrain motion can meet the displacement limits by properly selecting the stiffness and coordinates of the tuning points of each mount in its LCS using the calculation methods developed in this paper. Simulation results of the dynamic responses of a powertrain C.G. and the reaction forces at mounts demonstrate that resonance peaks can be reduced effectively with HEMs designed on the basis of the proposed methods.

Study on rock reinforcement process and the effect of produced strength right after rockbolt installation (록볼트의 타설 직후의 강도발현 과정 및 효과에 관한 연구)

  • Itoh, Jhun;Park, Hae-Geun;Kim, Dong-Wan;Kim, Jea-Kwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.2
    • /
    • pp.189-198
    • /
    • 2003
  • For the huge section of tunnel, it is highly required to observe the role of each rock support and their effect of rock reinforcement in order to investigate more reasonable rock support structure. Especially for unstable tunnel situation with no shotcrete strength right after an excavation, sufficient investigation is needed for rock support structure. In this paper, we clarify the relations of compressive strength and material age, cohesion strength and material age, and cohesion stiffness and material age of grout with time-dependence through tests and numerical analysis simulation with trial rock mass considering hardening of bolt grouting material. By means of this process, effect of rock reinforcement for rockbolt is investigated right after an excavation and modelling and physical constants of young aged rockbolts are obtained. Additionally, the effect of rock reinforcement with hydraulic tensile friction bolt is examined right after an excavation, which grout effect is no need to be waited.

  • PDF

Development and Verification of Analytical Model of a Pilot Operated Flow Control Valve for 21-ton Electric Excavator (21톤급 전기 굴삭기용 파일럿 작동식 유량제어 밸브의 해석모델 개발 및 검증)

  • Kim, D.M.;Nam, Y.Y.;Seo, J.H.;Jang, J.S.
    • Journal of Drive and Control
    • /
    • v.12 no.3
    • /
    • pp.52-59
    • /
    • 2015
  • An electro hydraulic poppet valve (EHPV) and a variable orifice poppet are assembled in a single block, which is referred to as a RHINO but is also generally called a pilot-operated flow control valve. In this study, we analyzed the structure and the operating principle for a RHINO applied in a 21-ton electric excavator system. The RHINO was experimentally tested to measure the dynamic responses and the pressure energy loss. In this test, we investigated the variation in the conductance coefficient according to the increase in the supply pressure under a constant current and a variation in the flow rate according to the increase in the current. Then, the geometrical shapes and the spring stiffness of the RHINO were considered to develop an analysis model. The characteristics (current-force and hysteresis) for the solenoid based on the experimental data were reflected in the analysis model that was developed, and the reliability of the analysis model was also verified by comparing the experimental and analytical results. The developed model is thus considered to be reliable for use in a wide range of applications, including optimum design, sensitivity analysis, parameter tuning, etc.