• 제목/요약/키워드: Hydraulic Robot

검색결과 100건 처리시간 0.031초

DEVELOPMENT OF AGRICULTURAL HYDRAULIC ROBOT(Part II) - Dynamic Characteristic of Hydraulic System

  • Mikio, Umeda;Michihisa, Iida;Kiyoshi, Namikawa
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.830-839
    • /
    • 1993
  • Agricultural hydraulic robot which was reported in Part Ⅰ had been developed . The robot satisfied performance to intend before development. For actual use, however, it have been necessary to reduce manipulator weigh and to simplify construction of hydraulic control valve. Then, working stress of manipulator link and pressure fluctuation of hydraulic circuit were measured. Step and frequency response tests were done subject to amplitude of reference voltage of 0.1 , 0.3 , 0.5 and 1.0v. and delivery pressure of 3.5 and 5.0MPa. Working stress were about 25% comparing with fatigue strength, Thus, mass of manipulator might be reduce to 30 %. In hydraulic control system, virtual natural frequency of 6.5Hz is produced from the combination of drain passage area shortage of servovalve. Further , because of passage area shortage , working pressure at both side of cylinder was acted on. This phenomenon prevent utilize effectively engine power. Then, control valve for new model was p oposed.

  • PDF

유압 구동식 이족 로봇의 구동을 위한 탑재식 유압 파워 유닛의 에너지 효율적 제어 (Energy Efficient Control of Onboard Hydraulic Power Unit for Hydraulic Bipedal Robots)

  • 조부연;김성우;신승훈;김민수;오준호;박해원
    • 로봇학회논문지
    • /
    • 제16권2호
    • /
    • pp.86-93
    • /
    • 2021
  • This paper proposes a controller to regulate the supply pressure of the hydraulic power unit (HPU) for driving a bipedal robot. We establish flow rate models for charging accumulator, actuating joints and leaking from actuators and spool valves. This determines the pump driving motor speed to satisfy the demanded flow rate for operating the bipedal robot without the energy loss caused by the bypass through a pressure regulating valve. We apply proposed controller to an onboard HPU mounted on top of bipedal robot platform with twelve degrees of freedom. We implement air-walking motion and squat motion which require variable flow rate to the bipedal robot. Through this experiment, the energy efficiency of proposed controller was verified by comparing the electric energy consumed when the controller was applied and when the pump operated at constant speed. We also shows the capability of the HPU's control performance to regulate supply pressure.

상수도 배관의 갱생 공정을 위한 배관 건설 로봇 개발 (Development of the Pipe Construction Robot for Rehabilitation Work Process of the Water Pipe Lines)

  • 정명수;이재열;홍성호;장민우;신동호;함제훈;서갑호;서진호
    • 로봇학회논문지
    • /
    • 제16권3호
    • /
    • pp.223-231
    • /
    • 2021
  • In this paper describes the research and development of a pipe robot for pipe rehabilitation construction of old water pipes. After the water supply pipe construction, the pipe is leaking, damaged, and aging due to corrosion. Eventually, resistance to the flow of water in lower supply efficiency and contaminated water such as rusty water, finally in various consumer complaints. In order to solve this problem, rehabilitation construction robot technology is required to secure the construction quality of pipe rehabilitation construction and restore the function of the initial construction period. The developed pipe rehabilitation construction robot required a hydraulic actuator for high traction and was equipped with a small hydraulic supply device. In addition, we have developed a hydraulic cylinder and a link system that supports the pipe inner diameter to develop a single pipe robot corresponding to 500 to 800mm pipe diameter. The analysis and experimental verification of the driving performance and unit function of the developed pipe reconstruction robot are explained, and the result of the integrated performance test of the pipe reconstruction robot at the water supply pipe network site is explained.

유압구동식 4족보행 로봇의 설계 및 제어 (Design and Control of a Hydraulic Driven Quadruped Walking Robot)

  • 김태주;원대희;권오흥;박상덕;손웅희
    • 로봇학회논문지
    • /
    • 제2권4호
    • /
    • pp.353-360
    • /
    • 2007
  • This paper proposes the trot gait pattern generation and online control methods for a quadruped robot to carry heavy loads and to move fast on uneven terrain. The trot pattern is generated from the frequency modulated pattern generation method based on the frequency modulated oscillator in order for the legged robots to be operated outdoor environment with the static and dynamic mobility. The efficiency and performance of the proposed method are verified through computer simulations and experiments using qRT-1/-2. In the experiments, qRT-2 which has two front legs driven by hydraulic linear actuators and two rear casters is used. The robot can trot at the speed up to 1.3 m/s on even surface, walk up and down the 20 degree inclines, and walk at 0.7 m/s on uneven surface. Also it can carry over 100 kg totally including 40 kg payload.

  • PDF

유압식 이족 휴머노이드 로봇의 ZMP 기반 게인 스위칭 알고리즘을 이용한 관절 위치 제어 (Joint Position Control using ZMP-Based Gain Switching Algorithm for a Hydraulic Biped Humanoid Robot)

  • 김정엽
    • 제어로봇시스템학회논문지
    • /
    • 제15권10호
    • /
    • pp.1029-1038
    • /
    • 2009
  • This paper proposes a gain switching algorithm for joint position control of a hydraulic humanoid robot. Accurate position control of the lower body is one of the basic requirements for robust balance and walking control. Joint position control is more difficult for hydraulic robots than it is for electric robots because of an absence of reduction gear and better back-drivability of hydraulic joints. Backdrivability causes external forces and torques to have a large effect on the position of the joints. External ground reaction forces therefore prevent a simple proportional-derivative (PD) controller from realizing accurate and fast joint position control. We propose a state feedback controller for joint position control of the lower body, define three modes of state feedback gains, and switch the gains according to the Zero Moment Point (ZMP) and linear interpolation. Dynamic equations of hydraulic actuators were experimentally derived and applied to a robot simulator. Finally, the performance of the algorithm is evaluated with dynamic simulations.

편로드 유압실린더 내부 누유 검출을 위한 T—S 퍼지 모델 기반 샘플치 관측기 설계: LMI 접근법 (T—S Fuzzy Model-based Sampled-data Observer Design for Detecting Internal Oil Leakage in Single-rod Hydraulic Cylinder: LMI Approach)

  • 지성철;김효곤;박정우;이문직;강형주;이계홍
    • 한국해양공학회지
    • /
    • 제30권5호
    • /
    • pp.405-414
    • /
    • 2016
  • This paper presents an internal oil leakage detection problem for a hydraulic single-rod cylinder. We derive the dynamics of the hydraulic cylinder as a state space model, and then design a T—S fuzzy model-based fault detection observer. We adopt an H observer design scheme so that the observer is robust against disturbance and relatively sensitive to the leakage fault. Sufficient design conditions are derived in the form of linear matrix inequalities. A numerical example is provided to verify the proposed techniques.

위상평면을 이용한 유압식 이족 휴머노이드 로봇의 보행제어 (Walking Control Using Phase Plane of a Hydraulic Biped Humanoid Robot)

  • 최동일;김정훈;김정엽
    • 제어로봇시스템학회논문지
    • /
    • 제17권3호
    • /
    • pp.269-276
    • /
    • 2011
  • This paper proposes a novel control method using phase plane for a hydraulic biped humanoid robot. In biped walking control, it is much more difficult to control the posture of a biped robot in the coronal plane because the supporting area formed by the both feet in the coronal plane is much narrower than that of the sagittal plane. When the biped robot walks stably, the phase portrait of the pelvis in the coronal plane makes an elliptical shape. From this point of view, we develop an ankle torque controller and a foot placement controller for tracking the desired phase portrait during walking. We design these controllers by using simulations of a simplified compass gait biped model to regulate the desired phase portrait of pelvis. The effectiveness of the proposed control method is proved through full-body dynamic walking simulations and real experiments of the SARCOS hydraulic biped humanoid.