• Title/Summary/Keyword: Hydraulic Nozzle

Search Result 73, Processing Time 0.021 seconds

Conical Diffuser Design and Hydraulic Performance Characteristics in Bioreactor Using Empirical and Numerical Methods (원뿔형 산기관 설계와 생물반응조에서 수력학적 운전특성에 관한 실험 및 해석)

  • Lee, Seung-Jin;Ko, Kyeong-Han;Ko, Myeong-Han;Yang, Jae-Kyeong;Kim, Yong-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.633-643
    • /
    • 2015
  • In this study, we develop a highly efficient conical-air diffuser that generates fine bubble. By inserting a sufficient number of aerotropic microorganisms with dissolved oxygen from an air diffuser and minimizing the air-channel blockages within the air diffuser, we expect to improve the efficiency and durability of the decomposition process for organic waste. To upgrade the conventional air diffuser, we perform experiments and numerical analysis to develop a conical-type that generates fine bubble, and which is free from nozzle blockage. We complement the air-diffuser design by numerically analyzing the internal air-flow pattern within the diffuser. Then, by applying the diffuser to a mockup bioreactor, we experimentally and numerically study the bubble behavior observed in the diffuser and the 2-phase fluid flow in the bioreactor. The results obtained include statistics of the cord length and increased velocity, and we investigate the mechanisms of the fluid-flow characteristics including bubble clouds. Throughout the study, we systemize the design procedures for the design of efficient air diffusers, and we visualize the fluid-flow patterns caused by bubble generation within the mockup bioreactor. These results will provide a meaningful basis for further study as well as the detection of oxygen transfer and fluid-flow characteristics in real-scale bio-reactors using sets of air diffusers.

Experiments of Micro Jet Injection for Bio-Medical Application (바이오 분야 적용을 위한 마이크로 젯 인젝션 실험)

  • Ham, Young-Bog;An, Byeung-Cheol;Trimzi, Mojiz Abbas;Kim, Jong-Dae;Lee, Gi-Tae;park, Jung-Ho;Yun, So-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.10
    • /
    • pp.681-687
    • /
    • 2016
  • It is essential for micro jet injectors in the biomedical sector to operate under high pressure. High pressure injection, however, is accompanied by high volumes. On/Off valves that can be operated at high speeds have been used to address this problem. In this research, piezoelectric actuators which have a response frequency of the order of hundreds of kilohertz were used as the On/Off valve and experiments were applied. Researchers developed a controller to precisely manipulate the piezoelectric valve with various waveforms. They also fabricated five types of nozzles to consider the effect of nozzle type on injection. This allowed researchers to manipulate and confirm factors that can affect the injection volume and force. Results of this experiment have shown how to decrease the injection volume and increase the injection force. and it is predicted that the optimized injection volume and force value can be determined depending on the skin type.

An Experimental Study on Flow Distributor Performance with Single-Train Passive Safety System of SMART-ITL (SMART-ITL 1 계열 피동안전계통을 이용한 유동분사기 성능에 대한 실험연구)

  • Ryu, Sung Uk;Bae, Hwang;Yang, Jin Hwa;Jeon, Byong Guk;Yun, Eun Koo;Kim, Jaemin;Bang, Yoon Gon;Kim, Myung Joon;Yi, Sung-Jae;Park, Hyun-Sik
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.124-132
    • /
    • 2016
  • In order to estimate the effect of flow distributors connected to an upper nozzle of CMT(Core Makeup Tank) on the thermal-hydraulic characteristics in the tank, a simplified 2 inch Small Break Loss of Coolant Accident(SBLOCA) was simulated by skipping the decay power and Passive Residual Heat Removal System(PRHRS) actuation. The CMT is a part of safety injection systems in the SMART (System Integrated Modular Advanced Reactor). Each test was performed with reliable boundary conditions. It means that the pressure distribution is provided with repeatable and reproducible behavior during SBLOCA simulations. The maximum flow rates were achieved at around 350 seconds after the initial opening of the isolation valve installed in CMT. After a short period of decreased flow rate, it attained a steady injection flow rate after about 1,250 seconds. This unstable injection period of the CMT coolant is due to the condensation of steam injected into the upper part of CMT. The steady injection flow rate was about 8.4% higher with B-type distributor than that with A-type distributor. The gravity injection during hot condition tests were in good agreement with that during cold condition tests except for the early stages.