• Title/Summary/Keyword: Hydraulic Modeling

Search Result 585, Processing Time 0.031 seconds

Study on Modeling Procedure of Hydraulic Experiment of Coastal Structure Scour at Sea-Bed Using Fluid-structure Interaction (유체-구조 상호작용을 고려한 해안구조물의 해저면 세굴에 대한 조파실험 해석 기법 연구)

  • Kang, Kyoung-Won;Kim, Kee Dong;Han, Tong-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.49-53
    • /
    • 2012
  • Coastal structures, constructed for preventing coastal slope erosion, often causes the scour on the boundary between the coastal structure and the sea-bed, which might lead to collapse of coastal structures. To prevent the collapse, the usual upright block type coastal structures can be modified to other forms or systems of coastal structures. To validate the performance of the proposed systems, it is necessary to conduct high cost hydraulic experiments. If numerical modeling can be performed prior to the hydraulic experiments and the performance of the proposed systems is analyzed numerically in advance, the expenses can be reduced significantly by optimizing the number of cases for conducting the experiments. In this study, a fluid-structure interaction analysis procedure is proposed for modeling the hydraulic experiments of costal structures using the finite element package, LS-DYNA. As can be found in the usual hydraulic experiments, fluid velocities of potential scour locations are monitored and analyzed in detail for four types of coastal structures, block, step, trapezoid and rubble mound.

Modeling and Simulation for Predicting the Impact of Hydraulic Breaker (유압 브레이커의 충격량 예측을 위한 모델링과 해석)

  • Kim, Sung-Hyun;Chung, Jaeho;Baek, Dong-Cheon;Park, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.741-749
    • /
    • 2019
  • A hydraulic breaker attached to an excavator is a kind of constructuion equipment which is used for the disassembling of buildings, crashing road pavement, breaking rocks at quarry and etc. Therefore, the performance of the hydraulic breaker is mainly evaluated by the impact quantity and impact efficiency, which is an important factor for both the manufacturer and the user. In this paper, modeling and simulation for the prediction of the impact of the hydraulic breaker was conducted according to hydraulic pressure area and operating conditions of the hydraulic valve and piston using the commercial tools SimulationX for the 20ton hydraulic breaker which is mainly used in construction site. In order to verify the reliability of modeling and simulation, the results of previous experimental studies were compared and verified. The results of this study are expected to be useful for predicting the impact of the hydraulic breaker at the design stage before manufacturing and for studying parameters for improving the impact quantity. In addition, the manufacturer predicts that the development time and cost will be reduced through trial and error prevention by predicting the impact of the hydraulic breaker through the results of this paper.

Hydraulic-Mechanical Modeling on Fracture Transmissivity Evolution Around a Borehole (시추공 주변 단열 투수도 진화에 대한 수리-역학 연동 모델링 평가)

  • Choi, Chae-Soon;Park, Kyung-Woo;Park, Byeong-Hak;Ko, Nak-Youl;Ji, Sung-Hoon
    • The Journal of Engineering Geology
    • /
    • v.31 no.1
    • /
    • pp.55-66
    • /
    • 2021
  • Hydraulic-mechanical (H-M) coupled numerical modeling was used to evaluate the evolution of hydrogeological properties in response to the installation and expansion of a borehole. A domain with a discrete fracture network was adopted for discontinuum modeling to simulate changes in fracture apertures. Comparison with real hydraulic test data shows that the effects of principal stress direction and expansion of borehole diameter were reasonably simulated by H-M coupled numerical modeling. The modeling confirmed that aperture changes depended on the principal stress direction, with an increase in aperture size due to vertical displacement being the dominant effect. A concentration of shear dilation around the borehole had an additional, subsidiary, effect on the hydrogeological evolution. These results show that the permeability of fractured rock can be increased by changing the hydraulic properties of a fracture through stress redistribution caused by the installation and expansion of a borehole.

Dam-reservoir-foundation interaction effects on the modal characteristic of concrete gravity dams

  • Shariatmadar, H.;Mirhaj, A.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.1
    • /
    • pp.65-79
    • /
    • 2011
  • Concrete hydraulic structures such as: Dams, Intake Towers, Piers and dock are usually recognized as" Vital and Special Structures" that must have sufficient safety margin at critical conditions like when earthquake occurred as same as normal servicing time. Hence, to evaluate hydrodynamic pressures generated due to seismic forces and Fluid-Structure Interaction (FSI); introduction to fluid-structure domains and interaction between them are inevitable. For this purpose, first step is exact modeling of water-structure and their interaction conditions. In this paper, the basic equation involved the water-structure-foundation interaction and the effective factors are explained briefly for concrete hydraulic structure types. The finite element modeling of two concrete gravity dams with 5 m, 150 m height, reservoir water and foundation bed rock is idealized and then the effects of fluid domain and bed rock have been investigated on modal characteristic of dams. The analytical results obtained from numerical studies and modal analysis show that the accurate modeling of dam-reservoir-foundation and their interaction considerably affects the modal periods, mode shapes and modal hydrodynamic pressure distribution. The results show that the foundation bed rock modeling increases modal periods about 80%, where reservoir modeling changes modal shapes and increases the period of all modes up to 30%. Reservoir-dam-foundation interaction increases modal period from 30% to 100% for different cases.

Variable Time Step Simulation and Analysis of Hydraulic Control Systems using Transmission Line Modeling (전달관로 모델링을 이용한 유압제어 시스템의 가변 시간스텝 시뮬레이션 및 해석)

  • Hwang, Un-Gyu;Jo, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.843-850
    • /
    • 2002
  • This paper presents a simulation method using the transmission line modeling to reduce simulation runtime of hydraulic control systems. This method is based on separating the system components each other using the transmission line elements prior to simulation, which leads to divide the simulated system into several subsystems suitable for an even more efficient integration. It can also handle nonlinearities and discontinuities without flag signal when restarting integration. By applying variable integration timestep to parallel hydraulic circuits via parallel processing, it is shown that simulation run-time can be reduced significantly compared with that of Runge Kutta method.

Hydraulic and Numerical Modeling of Seawater Circulation of Semi-enclosed Bay with the Flow-control Structures (유동제어구조물에 의한 내만의 해수순환 모델링)

  • 김종규;강태순;김헌태
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.20-28
    • /
    • 2000
  • Using the hydraulic and numerical model of semi-enclosed bay (Chinhae Bay), the efficiencies of flow-control structures on the seawater-circulation in the inner bay were investigated. Expecially, this study was confirmed the effectiveness of the flow-control structures at the mouth and narrow channel of Chinhae Bay through the experiments. The system of flow-control structures could enhance the water exchange improvement appropriately. The results of this study can be used as the long-term and integrated environmental impact assessment model in the inner bay.

  • PDF

Modeling and Simulation of an EPPR Valve Coupled with a Spool Valve

  • Khan, Haroon Ahmad;Yun, So-Nam
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.30-35
    • /
    • 2019
  • EPPR (Electro-hydraulic Proportional Pressure Reducing) valves are pressure control valves. In this study, an independent metering valve (IMV), which is a combination of a spool valve opened and closed with the help of an EPPR valve, was discussed. The overall performance of the valve (IMV) was obtained by the respective modeling and simulation of the system. The valve investigated in this study is to be used for independent metering of hydraulic excavator actuator e.g. boom, arm, bucket etc. To design the model, continuity equations and force balance equations were used. The set of differential equations were then simulated in Simulink using ODE45 option in the configuration toolbox. The valve has to be able to control the flow rate going in and out of the cylinder separately, which is why the particular configuration was needed and selected.

A design and simulation of a hydraulic control valve in transmission (트랜스 미션에 유압식 콘트롤밸브의 설계와 시뮬레이션)

  • 곽희성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.167-174
    • /
    • 1997
  • In this paper, the mathematical model of the hydraulic control valve is formulated, that is, this dynamic modeling which includes the motion equations and continuity equations can analyze the dynamic characteristics of the hydraulic control valve. The control valve for the transmission has the Over Speed Protection to protect a hydraulic travel motor. Therefore, this simulation shows the over speed protection and researches the main design parameters. The results of the computer simulation were assured through the experiment. From the comparison between both results, it is shown that this simulation program is useful and effective.

  • PDF

Design Parameters Considering Friction Characteristics for Rope Brake System of Elevator (로프 브레이크 시스템에서 마찰 특성을 고려한 설계 변수특성 연구)

  • Jang, Joosup
    • Tribology and Lubricants
    • /
    • v.29 no.3
    • /
    • pp.171-179
    • /
    • 2013
  • In this study, hydraulic systems of the rope brake system of an elevator are modeled to evaluate design parameters that consider friction characteristics such as cylinder pressure, piston displacement, and flow rate. Hydraulic systems of the rope brake system are analyzed using the commercial program AMESim. Analysis modeling data are compared with data obtained from experiments, and the analysis modeling results are found to be reliable. The analysis results will be used to design hydraulic systems of the rope brake system of elevators.

Modeling and $H_{\infty}$ Optimal Control Design for a Hydraulic Unit in ESP (ESP 유압 유니트의 모델링 및 $H_{\infty}$ 최적제어)

  • You, Seung-Han;Hahn, Jin-Oh;Cho, Young-Man;Lee, Kyo-Il
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.733-738
    • /
    • 2004
  • This paper deals with feedback control of a hydraulic unit for direct yaw moment control, a method used to actively maintain the dynamic stability of an automobile. The uncertain parameters and complex structure naturally call for empirical modeling of the hydraulic unit, which readily results in a control-oriented model with high fidelity. The identified model is cross-validated against experimental data under various conditions, which helps to establish model uncertainty. Then, the $H_{\infty}$ optimization technique is employed to synthesize a controller with guaranteed robust stability and performance against the model uncertainty. The performance of the synthesized controller is verified using experimental results, which shows the viability of the proposed approach in a real-world application.

  • PDF