• Title/Summary/Keyword: Hydraulic Manipulators

Search Result 26, Processing Time 0.022 seconds

Automatic Assembly Task of Electric Line Using 6-Link Electro-Hydraulic Manipulators

  • Kyoungkwan Ahn;Lee, Byung-Ryong;Yang, Soon-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1633-1642
    • /
    • 2002
  • Uninterrupted power supply has become indispensable during the maintenance task of active electric power lines as a result of today's highly information-oriented society and increasing demand of electric utilities. The maintenance task has the risk of electric shock and the danger of falling from high place. Therefore it is necessary to realize an autonomous robot system using electro-hydraulic manipulator because hydraulic manipulators have the advantage of electric insulation. Meanwhile it is relatively difficult to realize autonomous assembly tasks particularly in the case of manipulating flexible objects such as electric lines. In this report, a discrete event control system is introduced for automatic assembly task of electric lines into sleeves as one of the typical task of active electric power lines. In the implementation of a discrete event control system, LVQNN (linear vector quantization neural network) is applied to the insertion task of electric lines to sleeves. In order to apply these proposed control system to the unknown environment, virtual learning data for LVQNN is generated by fuzzy inference. By the experimental results of two types of electric lines and sleeves, these proposed discrete event control and neural network learning algorithm are confirmed very effective to the insertion tasks of electric lines to sleeves as a typical task of active electric power maintenance tasks.

A study on the design and characteristics of kinematics of 6 degree-of-freedom manipulators (6자유도 조작장치의 설계와 기구학적 특성에 관한 연구)

  • Kim, Jeoung-Tae;Kim, Moon-saeng
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.467-475
    • /
    • 1998
  • The Six Degree-of-Freedom manipulators are generally operated by linear actuators which are hydraulic cylinder, pneumatic cylinder, ball-screw. But these actuators are not adequate to have a wide work-space, and furthermore some of them have a self-locking property. Therfore, we have designed a new manipulator which fully overcomes these demerits. The new manipulating system consists of 6 DC-motors to generate operation forces and 6 position transducers to feedback displacement signals. This paper presents an overview of the design and characteristics of 6 Degree-of-Freedom force feedback manipulators for vitual reality implementation. we can operate Six Degree-of-Freedom manipulator with six motors and six potentiometers.

Kinematic Analysis of a Binary Robot Manipulator (2진 로봇 매니퓰레이터의 기구학적 해석)

  • 류길하
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.162-168
    • /
    • 1998
  • The traditional robot manipulators are actuated by continuous range of motion actuators such as motors or hydraulic cylinders. However, there are many applications of mechanisms and robotic manipulators where only a finite number of locations need to be reached, and the robot's trajectory is not important as long as it is bounded. Binary manipulator uses actuators which have only two stable states. As a result, binary manipulators have a finite number of states. The number of states of a binary manipulator grows exponentially with the number of actuators. This kind of robot manipulator has some advantage compared to a traditional one. Feedback control is not required, task repeatability can be very high, and finite state actuators are generally inexpensive. And this kind of robot manipulator has a fault tolerant mechanism because of kinematic redundancy. This paper develops algorithms for kinematics and workspace analysis of a binary manipulator.

  • PDF

Dynamic Model Parameter Estimation of Hydraulic Cylinder for Robot Manipulator Control (유압구동 로보트의 제어를 위한 유압 실린더 모델 파라미터 추정)

  • Choi, Myoung-Hwan
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.113-121
    • /
    • 1996
  • In the early developmental stages of robotics,hydraulics played an important role. As the power-to-weight ratio of electric motors increased, they eventually replaced hydraulic actuators in robot manipulators. Recently, however, task requirements have dictated that the manipulator payload capacity increase to accomodate greater payload, greater length, greater reaction forces, and hydraulic actusators are being studied as an effective form of robot actuation again. For efficient control of hydraulic actuators, the knowledge of its dynamic equation is essential. However, the dynamic equation of hydraulic actuators are nonlinear, and the dynamic coefficients are time varying. In this paper, an estimation algorithm of the dynamic coefficients of the hydraulic piston dynamics are formulated. Simulation results are presented to show the possibility of the parameter estimation.

  • PDF

Robust Force Control of Electro-hydraulic Manipulator in the Field Task

  • Cho, Yong-Rae;Ahn, Kyoung-Kwan;Yang, Soon-Yong;Lee, Byung-Ryong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.134.4-134
    • /
    • 2001
  • Hydraulically driven manipulators are superior to electrically driven ones in the power density and electrical insulation. But an electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and its parameter fluctuations are greater than those of electrically driven manipulator. So it is relatively difficult to realize not only stable contact work but also accurate force control for the autonomous field tasks such as the maintenance task of high voltage active electric line or the automatic excavation task by hydraulic excavator. In this report, we propose robust force control algorithm, which can be applied to the real field task such as the construction field, nuclear plant and so on. Proposed force controller has the same structure as that of disturbance observer for position control. The difference between force and position disturbance ...

  • PDF

Robust Trajectory Control of a Hydraulic Excavator using Disturbance Observer in $H_\infty$Framework ($H_\infty$구조의 외란 관측기를 이용한 유압 굴삭기의 강인한 궤적 제어)

  • 최종환;김승수;양순용;이진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.130-140
    • /
    • 2003
  • This paper presents an $H_\infty$controller synthesis based on disturbance observer for the trajectory control of a hydraulic excavator. Compared to conventional robot manipulators driven by electrical motors, hydraulic excavator have more nonlinear and coupled dynamics. In particular, the interactions between an excavation tool and the materials being excavated are unstructured and complex. In addition, its operating modes depend on working conditions, which make it difficult to not only derive the exact mathematical model but also design a controller systematically. In this study, the approximated linear model obtained through off-line system identification is used as nominal plant model for a disturbance observer. A disturbance observer based tracking controller which considers the effect of disturbance and model uncertainty is synthesized in $H_\infty$frameworks. Simulation results are used to demonstrate the applicability of the proposed control scheme.

Inverse Kinematic Analysis of a Binary Robot Manipulator using Neural Network (인공신경망을 이용한 2진 로봇 매니퓰레이터의 역기구학적 해석)

  • Ryu, Gil-Ha;Jung, Jong-Dae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.211-218
    • /
    • 1999
  • The traditional robot manipulators are actuated by continuous range of motion actuators such as motors or hydraulic cylinders. However, there are many applications of mechanisms and robotic manipulators where only a finite number of locations need to be reached, and the robot’s trajectory is not important as long as it is bounded. Binary manipulator uses actuators which have only two stable states. As a result, binary manipulators have a finite number of states. The number of states of a binary manipulator grows exponentially with the number of actuators. This kind of robot manipulator has some advantage compared to a traditional one. Feedback control is not required, task repeatability can be very high, and finite state actuators are generally inexpensive. And this kind of robot manipulator has a fault tolerant mechanism because of kinematic redundancy. In this paper, we solve the inverse kinematic problem of a binary parallel robot manipulator using neural network and test the validity of this structure using some arbitrary points m the workspace of the robot manipulator. As a result, we can show that the neural network can find the nearest feasible points and corresponding binary states of the joints of the robot manipulator

  • PDF

Trajectory Control of a Hydraulic Excavator using Disturbance Observer in $H_{\infty}$ Framework

  • Choi, Jong-Hwan;Kim, Seung-Soo;Cho, Hyun-Cheol;Ahn, Tae-Kyu;Duoc, Buiquang;Yang, Soon-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.552-557
    • /
    • 2004
  • This paper presents a disturbance observer based on an $H_{\infty}$ controller synthesis for the trajectory control of a hydraulic excavator. Compared to conventional robot manipulators driven by electrical motors, the hydraulic excavator has more nonlinear and coupled dynamics. In particular, the interactions between an excavation tool and the materials being excavated are unstructured and complex. In addition, its operating modes depend on working conditions, which make it difficult to not only derive the exact mathematical model but also design a controller systematically. In this study, the approximated linear model obtained through off-line system identification is used as nominal plant model for a disturbance observer. A disturbance observer based tracking controller which considers the effect of disturbance and model uncertainty is synthesized in $H_{\infty}$ frameworks. Simulation results are used to demonstrate the applicability of the proposed control scheme.

  • PDF

Trajectory Control of a Hydraulic Excavator using Adaptive-Robust Control Method (적응-강인 제어기법을 이용한 유압 굴삭기의 궤적 제어)

  • 최종환;김용석;김승수;양순용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.186-194
    • /
    • 2003
  • This paper proposes a combined controller frame of the adaptive robust control(ARC) and the sliding mode control(SMC) for the trajectory tracking control of the excavator to preserve the advantages of the both methods while overcoming their drawbacks, namely, asymptotic stability of adaptive system fir parametric uncertainties and guaranteed transient performance of sliding mode control for both parametric uncertainties and external disturbance. The suggested control technique is applied for the tracking of a straight-line motion of end-effector of manipulators, and through computer simulations, its trajectory tracking performances and the robustness to payload variation and uncertainties are illustrated.

  • PDF