• Title/Summary/Keyword: Hydraulic Machine Components

Search Result 30, Processing Time 0.027 seconds

Estimation of Noise in and out the Cabin of Zero Tail Type Mini Excavator (소선회 미니굴삭기 운전실 내부 및 외부 소음평가)

  • Lee, Chong-Ho;Lee, Sung-Il;Kim, Cheol-Ho;Park, Jong-Sung;Sohn, Min-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.217-220
    • /
    • 2005
  • Zero tail type mini excavator is small in size and capacity compared with medium or large excavator. Therefore noise and heat problems are major issues in design due to layout of each components such as engine and hydraulic module. It is necessary to assure reduction of noise and vibration in construction machine, due to be enforced regulation for high noise construction machinery at home and abroad. The objective of this study is to provide basic data which is apply to predict noise effect in detail design stage by estimating noise of cabin for zero tail type mini excavator.

  • PDF

Noise Reduction study in the Tractor Cab (트랙터 차실의 소음 저감에 관한 연구)

  • Chun, Du-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1461-1466
    • /
    • 2000
  • This paper investigates the noise reduction scheme in tractor cabin by using various steps of experiment. The experiments were performed in the field as well as in the lab to facilitate the detail test procedure. Some of the test results were compared with computational results. Several noise sources and paths were identified including the engine compartment (cooling fan and timing gear cover), hydraulic system and its components (hoses, tubes and there mount) and structural characteristics of the cab, window, mounting bracket and machine frame including steps. Throughout the several design changes, cab noise level was reduced from 80.2dBA to 74.8dBA.

  • PDF

Study of the high pressure hose assemblies by accelerated life test (고압호스 조립체의 가속수명시험에 관한 연구)

  • Lee, Gi Chun;Lee, Yong Bum
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.886-892
    • /
    • 2013
  • Hydraulic hose assemblies are used as piping components for construction machinery, automobile, aircraft, industrial machinery, machine tools, and machinery for ships. Then the reliability of hose assemblies is important because total hydraulic system, which used to deliver the fluid power ($P^*Q$) needed to flexibility in the piping system, is not operated if the hose assembly failed in the system. The data of the accelerated life test estimated through the shape parameter(${\beta}$) resulting of the Weibull distribution analysis. This study has tried to reduce the test time resulting from varying impulse pressure range and the flexing diameter. Accelerated life test model for the test results was adopted the GLL(generalized log linear) and the accelerated indexes are identified as 6.64 for the pressure and 4.46 for flexing radius. Also, it found that shape parameter is 6.19, scale parameter(${\eta}$) is $1.035{\times}108$, which were adopted the pressure 35 MPa and the flexing diameter R100 mm in the used condition.

A Study on Failure Diagnosis System for a Hydraulic Pump in Injection Molding Machinery Using Vibration Analysis (진동 분석을 이용한 사출성형기 유압펌프 결함 진단 시스템에 관한 연구)

  • Kim, Taehyun;Jeon, Yongho;Lee, Moon Gu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.343-348
    • /
    • 2013
  • In line with the advances in factory automation, various pieces of equipment are now operated in batch processes controlled by computers. However, many kinds of faults can occur in complicated and large systems, which can result in low productivity and economic loss. The reliability and safety of systems have been studied because of the difficulty of determining the severity and location of faults. Therefore, it is necessary to detect and diagnose such faults in order to guarantee the reliability and safety of the equipment. In this paper, a diagnosis method for the ball bearings of a hydraulic pump is applied using a vibration signal for the maintenance of injection molding equipment. The bearings' defects are selected as a main failure mode through a failure mode and effect analysis (FMEA). Usually, there are nonlinear and impulse components of vibration in a ball bearing with faults. For the effective fault diagnosis of a ball bearing, nonlinear diagnostic methods and time-frequency analysis are applied, in addition to the methods currently used, such as power spectrum, time series analysis, and statistical methods. As a result of this study, a failure diagnosis system is provided that is useful even for non-experts. This is a condition-based method that makes it possible to resolve problems in a timely and economical way, in contrast to the prior method, which required regular but wasteful maintenance based on the experience of expensive external experts.

A study on the thrust force and torque calculation models in the design of shield TBM (쉴드 TBM 설계 시 추력과 토크 산정식들에 대한 고찰)

  • Chong, Song-Hun;Lee, Seung-Hun;Ryu, Hee-Hwan;Kim, Hun-Tae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.219-237
    • /
    • 2020
  • Rapid economic development and urban population growth have been increasing the necessity for underground space exploration and utilization due to the need of upgrading and expanding the existing infrastructures. TBM has been widely used to construct underground structures with high advance rate and minimal ground disturbance. Two important design parameters, which are available thrust capacity and cutterhead torque, should be estimated for any project in addition to proper selection of TBM type. However, the conventional thrust force and torque estimation model only depends on the empirical equation, which hinders the design process of the optimal thrust hydraulic system and the appropriate hydraulic components. In this study, four thrust and torque calculation models are derived and explained. For TBM design practice, the four estimation models are compared and discussed.

Development of a Precision Seeder for Direct Seeding of Rice on Dry Paddy (정밀 파종 벼 건답직파기 개발)

  • Yoo, S.N.;Kim, D.H.;Choi, Y.S.;Suh, S.R.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.2
    • /
    • pp.83-93
    • /
    • 2008
  • In order to save labor and cost, direct seeding has been considered as an important alternative to the machine transplanting in rice cultivation. Current direct seeding machines for rice in Korea drill irregularly under various operating conditions. This study was conducted to develope a precision seeder which enables the accurate, even-spaced in row placement of rice seeds at uniform depths of 3-4 cm on dry paddy. Design, construction and performance evaluation of the precision seeder were carried out. The tractor rear-mounted type 8-rows precision seeder which performs seeding in addition to fertilizing, ditching, and rotary tilling works on dry paddy was developed. Main components of the seeder were ditcher and leveller, rotary tiller, powered roller type furrow opener, seeding device, powered roller type furrow covering and firming device, hydraulic unit, seeding speed control system, power transmission system, hitch and frame. Ditching, furrow opening, and seed covering and firming performances were good and seeding depths of 2-4 cm could be maintained. Planting accuracies and planting precisions were within 13.6%, and 31.2%, respectively, for planting space of 15 cm, and seeding velocity of 0.5 m/s. These mean variations of average planting space were within 2.1 cm, and 90% of seeds in a hill were seeded within 4.7 cm of hill length, respectively. Error ratios between setting planting space and measured average planting space were shown within 6.7%. Therefore the seeder showed good planting performance up to seeding velocity of 0.5 m/s in field tests. And field capacity of the seeder was about 0.28 ha/hour.

A Door Frame for Wind Turbine Towers Using Open-Die Forging and Ring-Rolling Method (열간자유단조와 링롤링공법을 이용한 풍력발전기용 도아프레임 개발)

  • Kwon, Yong Chul;Kang, Jong Hun;Kim, Sang Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.721-727
    • /
    • 2015
  • The mechanical components for wind turbines are mainly manufactured using open-die forging. This research introduces an advanced forging method to produce the door frame of the tubular wind turbine tower. The advantages of this new forging method are an increase in the raw material utilization ratio and a reduction in energy cost. In the conventional method, the door frame is hot forged with a hydraulic press and amounts of material are machined out because of the shape difference between the forged and final machine products. The proposed forging method is composed of hot forging and ring rolling processes to increase the material utilization ratio. The effectiveness of this new forging method is deeply related to the ring rolled blank dimension before the final forging. To get the optimal ring rolled blank, forged shape prediction using the finite element analysis method was applied. The forged dimensions produced by the new forging method were verified through the first article production.

Study on the Manufacturing of Leather-like Material using Leather and Textile Scrap (피혁 및 섬유 제조공정 폐기물을 활용한 피혁 대체 소재의 제조에 관한 연구)

  • Kim, Won-Ju;Ko, Jae-Yong;Heo, Jong-Soom
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.4
    • /
    • pp.93-99
    • /
    • 2000
  • Treatment of shaving scrap, a chrome containing solid scrap generated by leather manufacturing process, has been so far depended on mainly incineration, soil landfill and ocean dumping, which give bad impact on environment and cause pollution. Shaving scrap generates from the mechanical work for controlling the final thickness of leather and its main components are collagen protein and pan of chromium compound. For the purpose of reusing this leather waste as resources, researches in connection with collagen fiber recovery, gelable protein recovery and liquid fertilizer is being speedily progressed. In the experiment, shaving scrap went through wet pulverizing treatment by physical and chemical methods. Then, making the leather sheet evenly, it is mixed with natural latex and every kind of binding materials in the container, and the mixtures were passed through experimental hydraulic press machine and applied to Fourdrinier machine respectively. Lastly, a test for fading out physical strength and properties of multiple-purpose of leather-like material was performed on a continuous leather sheet prepared by the experiment. In result, the physical strength and properties of leather-like material showed noticeable differences according to mixing ratio of binding materials, beating methods and the Ends of binding materials selected, and generally tear strength was the weakest property among others. Also, by the pilot scale experiment in sequence, it was possible to manufacture recycled goods made of soft and hard types of leather-like material with various performances.

  • PDF

Design of Brushless Permanent Machine with Skewed Stator for Electrical Power Steering System (전동 조향 장치용 브러쉬리스 영구자석 전동기의 스테이터 스큐 설계)

  • Lee, Choong-Sung;Jung, Kyung-Tae;Hong, Jung-Pyo;Kim, Hae-Joong;Kim, Young-Kyun
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.6
    • /
    • pp.189-197
    • /
    • 2015
  • As enforced the regulation of fuel efficiency, the electrification of automotive components in internal combustion vehicle has been applied instead of hydraulic pressure. A typical example of such parts is the EPS (electric power steering), and it is applied to most automotive at present. In electric power steering system, the core component is motor. The reduction of cogging torque and torque ripple is required to improve steering feeling and reduce NVH (Noise Vibration Harshness) in EPS. Generally the skewed design of stator or rotor is applied in order to reduce cogging torque and torque ripple. This paper propose the design and analysis methodology of Brusheless PMSM (Permanent Magnet Synchronous Motor) which is applied to skewed stator. The proposed methodology is as follows: First Intial Design PMSM with skewed stator for EPS, Second Optimal design using RSM (Response surface method), Third Performance Analysis such as Phase Back EMF, Inductance, Load torque using FEA (Finite Element Method). Finally, the reliability of proposed design methodology will be verified through the experiments of prototype sample.

A Comparative Analysis of Student Self-, Teacher-, and Objective Assessments of Elementary Science-Gifted Students' Scientific Creativity (초등과학영재학생의 과학창의성에 대한 자기 평가, 교사 평가, 객관적 평가의 비교 분석)

  • Kim, Min-Ju;Lim, Chae-Seong
    • Journal of Korean Elementary Science Education
    • /
    • v.37 no.4
    • /
    • pp.440-454
    • /
    • 2018
  • This study aims to compare student self-, teacher-, and objective assessments of elementary science-gifted students' scientific creativity. A science-gifted program on the topic of Hydraulic Machine was implemented to 40 fifth-graders in the Science-Gifted Education Center of an education office in Seoul, Korea for four weeks. The products of the students' activities were assessed by three types of 'Student Self-Assesment', 'Teacher-Assesment', and 'Objective Assessment using Formula'. Based on two essential components of creativity, the scientific creativity is divided into two parts of originality and usefulness. Ideas that satisfy both components can be counted as scientifically creative. The main results of this study are as follows: First, the scores of each week and the average of the overall four-week scores on scientific creativity were significantly correlated. Student self-assessment (r=.687), teacher-assessment (r=.715), and objective assessment (r=.724) appeared consistently over instructional periods. Second, the average scores of student self-, objective, and teacher-assessments were 73.15, 35.72, and 26.60, respectively. The result of student self-assessment on scientific creativity tended to be higher than those of formula and teacher. Third, among the three types of assessment on scientific creativity, a strong correlation appeared between teacher- and objective assessment (r=.974), but neither between student self- and objective (r=.161) nor between student self- and teacher- (r=.213). Fourth, the scores on originality component had a positive correlation between teacher- and objective assessment (r=.713). The scores of student self- and teacher-assessments had a significant correlation too (r=.315), but not between student self- and objective assessment (r=.279). Fifth, the scores on usefulness component did not have a significant correlation between student self- and teacher-assessment (r=.155). Sixth, there was no significant difference on scientific creativity between student self- and objective assessment [${\chi}^2$(1, n=40)=1.667, p<.197]. Not between student self- and teacher-assessment either [${\chi}^2$(1, n=40)=1.616, p<.204]. On the contrary, there was a significant difference between teacher- and objective assessment [${\chi}^2$(1, n=40)=32.593, p<.000]. Seventh, the students were categorized into four groups according to the levels of their scores by student self- and teacher-assessment. The result showed that factors influencing student self-assessment are inherent in the personality traits of gifted individuals, such as self-esteem and perfectionism. The findings suggested that there are challenges for the educators to make efforts to construct consistent assessment methods for scientific creativity.