• Title/Summary/Keyword: Hydraulic Loss

Search Result 393, Processing Time 0.028 seconds

Optimal design methodology of district metered area utilizing Geographic Information System (GIS를 이용한 상수관망 소블록 최적설계기법 개발)

  • Kim, Kyoung-Pil;Park, Yong-Gyun;Koo, Ja-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.2
    • /
    • pp.223-231
    • /
    • 2015
  • District Metered Area (DMA) construction is one of the most cost effective alternatives for management of water loss (i.e., water leakage) and energy consumption (i.e., water pressure) in water distribution systems. Therefore, it's being implemented to numerous new and existing water distribution systems worldwide. However, due to the complexity of water distribution systems, especially large-scale and highly looped systems, it is still very difficult to define the optimal boundary of DMAs considering all the aspects of water distribution system management requirements. In this study, a DMA design methodology (or a DMA design model) was developed with Geographic Information Systems (GIS) and hydraulic distribution system model to determine the optimal DMA boundary.

Containment Closure Time Following Loss of Cooling Under Shutdown Conditions of YGN Units 3&4

  • Seul, Kwang-Won;Bang, Toung-Seok;Kim, Se-Won;Kim, Hho-Jung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.647-652
    • /
    • 1998
  • The YGN Units 3&4 plant conditions during shutdown operation were reviewed to identified the possible even scenarios following the loss of shutdown cooling. The Thermal hydraulic analyses were performed for the five cases of RCS configurations under the worst event scenario, unavailable secondary cooling and no RCS inventory makeup, using the RELAP5/MOD3.2 code to investigate the plant behavior, From the analyses results, times to boil, times to core uncovery and times to core heat up were estimated to determined the containment closure time to prevent the uncontrolled released of fission products to atmosphere, These data provide useful information to the abnormal procedure to cope with event.

  • PDF

Reactivity feedback effect on loss of flow accident in PWR

  • Foad, Basma;Abdel-Latif, Salwa H.;Takeda, Toshikazu
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1277-1288
    • /
    • 2018
  • In this work, the reactor kinetics capability is used to compute the design safety parameters in a PWR due to complete loss of coolant flow during protected and unprotected accidents. A thermal-hydraulic code coupled with a point reactor kinetic model are used for these calculations; where kinetics parameters have been developed from the neutronic SRAC code to provide inputs to RELAP5-3D code to calculate parameters related to safety and guarantee that they meet the regulatory requirements. In RELAP5-3D the reactivity feedback is computed by both separable and tabular models. The results show the importance of the reactivity feedback on calculating the power which is the key parameter that controls the clad and fuel temperatures to maintain them below their melting point and therefore prevent core melt. In addition, extending modeling capability from separable to tabular model has nonremarkable influence on calculated safety parameters.

Similarity evaluation of the pump simulation loop in STELLA-2 for conservation of mechanical sodium pump characteristics

  • Jung Yoon ;Jewhan Lee ;Jaehyuk Eoh;Hyungmo Kim ;Dong Eok Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.353-363
    • /
    • 2023
  • The STELLA-2 is a large-scale sodium thermal-hydraulic integral effect test facility and supports the development of PGSFR. The facility adopted Pump Simulation Loop System (PSLS) concept for the mechanical sodium pump in the reference reactor to control and to measure the primary sodium flow. Since the component (mechanical pump) is replaced by the loop, it is very important to evaluate the similarity between the pump and the loop. In this paper, to simulate the characteristic of the mechanical sodium pump, the pressure loss along the various options of the loop was evaluated and the comprehensive validity of each design options was analyzed. Using the similarity criteria based on the Richardson number and Euler number conservation, the PSLS design was finalized and the result was within the acceptable error range. Finally, the result of this study was used for construction of the overall facility, STELLA-2.

Soil Erosion and Sediment Yield Reduction Analysis with Land Use Conversion from Illegal Agricultural Farming to Forest in Jawoon-ri, Kangwon using the SATEEC ArcView GIS System (SATEEC ArcView GIS 시스템을 이용한 홍천군 자운리 유역 무허가경작지의 산림 환원에 따른 토양유실 및 유사저감 분석)

  • Jang, Won-Seok;Park, Youn-Shik;Kim, Jong-Gun;Choi, Joong-Dae;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1300-1304
    • /
    • 2008
  • The fact that soil loss causing to increase muddy water and devastate an ecosystem has been appearing upon a hot social and environmental issues which should be solved. Soil losses are occurring in most agricultural areas with rainfall-induced runoff. It makes hydraulic structure unstable, causing environmental and economical problems because muddy water destroys ecosystem and causes intake water deterioration. One of three severe muddy water source areas in Soyanggang-dam watershed is Jawoon-ri region, located in Hongcheon county. In this area, many cash-crops are planted at illegally cultivated agricultural fields, which were virgin forest areas. The purpose of this study is to estimate soil loss with current land uses (including illegal cash-crop cultivation) and soil loss reduction with land use conversion from illegal cultivation back to forest. In this study, the Sediment Assessment Tool for Effective Erosion Control (SATEEC) ArcView GIS system was utilized to assess soil erosion. If the illegally cultivated agricultural areas are converted back to forest, it is expected to 17.42% reduction in soil loss. At the Jawoon-ri region, illegally cultivated agricultural areas located at over 30% and 15% slopes take 47.48 ha (30.83%) and 103.64 ha (67.29%) of illegally cultivated agricultural fields respectively. If all illegally cultivated agricultural fields are converted back to forest, it is expected that 17.41% of soil erosion and sediment reduction, 10.86% reduction with forest conversion from 30% sloping illegally agricultural fields, and 16.15% reduction with forest conversion from 15% sloping illegally agricultural fields. Therefore, illegally cultivated agricultural fields located at these sloping areas need to be first converted back to forest to maximize reductions in soil loss reduction and muddy water outflow from the Jawoon-ri regions.

  • PDF

Pressure Loss Analysis of the 75 kW MCFC Stack with Internal Manifold Separator (75 kW 용융탄산염 연료전지 (MCFC) 스택 내 압력 손실 해석)

  • Kim, Beom-Joo;Lee, Jung-Hyun;Kim, Do-Hyeong;Kang, Seung-Won;Lim, Hee-Chun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.5
    • /
    • pp.367-376
    • /
    • 2008
  • To obtain the data of the pressure loss and differential pressure at the inside of the stack that was composed of 126 cells with 7,500 cm2 electrode area, 75kW molten carbonate fuel cell system has been operated. Computational fluid dynamics was applied to estimate reactions and thermal fluid behavior inside of the stack that was adopted with internal manifold type separator. The pressure loss coefficient K showed 72.29 to 84.01 in anode and 6.34 to 8.75 in cathode at low part of cells at the inside of 75 kW MCFC stack respectively. Meanwhile, the pressure loss coefficient of the higher part of cells at the interior of the stack showed 15.36 and 56.44 in anode and cathode respectively. These results mean that there is no big total pressure difference between anode and cathode at the inner part of 75 kW MCFC stack. This result will be reflected in 250kW MCFC system design.

Analysis of MSGTR-PAFS Accident of the ATLAS using the MARS-KS Code (MARS-KS 코드를 사용한 ATLAS 실험장치의 MSGTR-PAFS 사고 분석)

  • Jeong, Hyunjoon;Kim, Taewan
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.3
    • /
    • pp.74-80
    • /
    • 2021
  • Korea Atomic Energy Research Institute (KAERI) has been operating an integral effects test facility, the Advanced Thermal-Hydraulic Test Loop for Accident Simulation (ATLAS), according to APR1400 for transient experimental and design basis accident simulation. Moreover, based on the experimental data, the domestic standard problem (DSP) program has been conducted in Korea to validate system codes. Recently, through DSP-05, the performance of the passive auxiliary feedwater system (PAFS) in the event of multiple steam generator tube rupture (MSGTR) has been analyzed. However, some errors exist in the reference input model distributed for DSP-05. Furthermore, the calculation results of the heat loss correlation for the secondary system presented in the technical report of the reference indicate that a large difference is present in heat loss from the target value. Thus, in this study, the reference model is corrected using the geometric information from the design report and drawings of ATLAS. Additionally, a new heat loss correlation is suggested by fitting the results of the heat loss tests. Herein, MSGTR-PAFS accident analysis is performed using MARS-KS 1.5 with the improved model. The steady-state calculation results do not significantly differ from the experimental values, and the overall physical behavior of the transient state is properly predicted. Particularly, the predicted operating time of PAFS is similar to the experimental results obtained by the modified model. Furthermore, the operating time of PAFS varies according to the heat loss of the secondary system, and the sensitivity analysis results for the heat loss of the secondary system are presented.

Recycling of Wastepaper(12) -Froth-Flotation Conditions for Enhancement of Fines Fractionation Selectivity and Efficiency- (고지재생연구(제12보) -부상부유 처리의 미세분 분급 선택성과 효율 상승을 위한 처리조건-)

  • 여성국;류정용;신종호;송봉근;서영범
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.1
    • /
    • pp.16-23
    • /
    • 2001
  • Hydraulic transport of fines up to the surface of flotation cell was supposed to be a mechanism of fines fractionation through the froth-flotation. Efficient fractionation of fines means efficient skimming out of flotation rejects as much as possible with least long fiber loss. The selectivity of fines fractionation was found to be mainly affected by long fibers flocculation degree in this study. Lack of sufficient flocculation of long fibers could lead to extensive loss of long fibers. It was also found that higher flotation flux caused higher flotation reject as well as the increase of long fiber loss, but did not affect the fine content ratio in the flotation reject. We controlled the flotation flux and the stock consistency, and chose a cationic polymer to maximize the flocculation of long fibers and to increase the amount of flotation reject. The highest efficiency of fines fractionation was obtained at 1.3% of stock consistency and at 100L/min of flotation flux in our experimental set up. The cationaic polymer we chose was found to be very effective in fiber flocculation and flotation froth stabilization. New definitions of fractionation efficiency were introduced in this study to compare the results more clearly.

  • PDF

Treatment of Polyester Weight Loss Wastewater by Aerated Submerged Biofilm Process (호기성 침지형 생물막법을 이용한 Polyester 감량폐수의 처리)

  • 박종웅;김대희
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.3
    • /
    • pp.85-90
    • /
    • 1997
  • The objective of this study was to investigate biodegradation of TPA(terephthalic acid) and EG (ethylene glycol), treatment efficiency of polyester weight loss wastewater and microbial characteristics by aerated submerged biolfilm(ASB) p.rocess. In a batch reactor, pH increased from 7.0 to 8. 5 in the biodegradation of TPA. Whereas, in case of EG, decreased from 7.0 to 5.2. COD concentration rapidly decreased within 24hr in the biodegradation of TPA and EG. COD removal velocity constant(k) were 0.065-0.088 hr$^{-1}$. The biodegradation velocity of TPA was 1.4 times faster than that of EG. The ratio of suspended biomass to the total biomass in the reactor was 18.3-33.3%, increased as a high ratio of EG content. Biofilm thickness, biofilm dry density and attached biomass were 346-432 $\mu$m, 41.8-61.9 mg/cm$^3$, 1.45-2.67 mg/cm$^2$, respectively. There values increased as a high ratio of TPA content. In the hydraulic retention time of 36 hr, organic loading rate of 4 kgCOD/m$^3\cdot$ day and packing ratio of 70%, the effluent concentrations of TCOD, SCOD in a continuous flow reator were 1,388 mg/l, 147 mg/l and removal efficiencies were 77%, 97.6%, respectively.

  • PDF

Numerical Investigation on Frictional Pressure Loss in a Perfect Square Micro Channel with Roughness and Particles

  • Han Dong-Hyouck;Lee Kyu-Jung
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1266-1274
    • /
    • 2006
  • A numerical study is performed to investigate the effect of inner surface roughness and micro-particles on adiabatic single phase frictional pressure drop in a perfect square micro channel. With the variation of particles sizes (0.1 to $1{\mu}m$) and occupied volume ratio (0.01 to 10%) by particles, the Eulerian multi-phase model is applied to a $100{\mu}m$ hydraulic diameter perfect square micro channel in laminar flow region. Frictional pressure loss is affected significantly by particle size than occupied volume ratio by particles. The particle properties like density and coefficient of restitution are investigated with various particle materials and the density of particle is found as an influential factor. Roughness effect on pressure drop in the micro channel is investigated with the consideration of roughness height, pitch, and distribution. Additionally, the combination effect by particles and surface roughness are simulated. The pressure loss in microchannel with 2.5% relative roughness surface can be increased more than 20% by the addition of $0.5{\mu}m$ diameter particles.