• Title/Summary/Keyword: Hydraulic Loss

Search Result 393, Processing Time 0.025 seconds

Thermal-Hydraulic Analysis and Parametric Study on the Spent Fuel Pool Storage (기사용 핵연료 저장조에 대한 열수력 해석 및 관련 인자의 영향 평가)

  • Lee, Kye-Bock;Nam, Ki-Il;Park, Jong-Ryul;Lee, Sang-Keun
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.19-31
    • /
    • 1994
  • The objective of this study is to conduct a thermal-hydraulic analysis on the spent fuel pool and to evaluate a parametric effect for the thermal-hydraulic analysis of spent fuel pool. The selected parameters are the Reynolds Number and the gap flow through the oater gap between fuel cell and fuel bundle. The simplified flow network for a path of fuel cells is used to analyze the natural circulation phenomenon. In the flow network analysis, the pressure drop for each assembly from the entrance of the fuel rack to the exit of the fuel assembly is balanced by the driving head due to the density difference between the pool fluid and the average fluid in each spent fuel assembly. The governing equations ore developed using this relation. But, since the parameters(flow rate, pressure loss coefficient, decay heat, density)are coupled each other, iteration method is used to obtain the solution. For the analysis of the YGN 3&4 spent fuel rack, 12 channels are considered and the inputs such as decay heat and pressure loss coefficient are determined conservatively. The results show the thermal-hydraulic characteristics(void fraction, density, boiling height)of the YGN 3&4 spent fuel rack. There occurs small amount of boiling in the cells. Fuel cladding temperature is lower than 343.3$^{\circ}C$. The evaluation of parametric effect indicates that flow resistances by geometric effect are very sensitive to Reynolds number in the transition region and the gap flow is negligible because of the larger flow resistance in the gap flow path than in the fuel bundle.

  • PDF

Evaluation of Low or High Permeability of Fractured Rock using Well Head Losses from Step-Drawdown Tests (단계양수시험으로부터 우물수두손실 항을 이용한 단열의 고.저 투수성 평가)

  • Kim, Byung-Woo;Kim, Hyoung-Soo;Kim, Geon-Young;Koh, Yong-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • The equation of the step-drawdown test "$s_w=BQ+CQ^p$" written by Rorabaugh (1953) is suitable for drawdown increased non-linearly in the fractured rocks. It was found that value of root mean square error (RMSE) between observed and calculated drawdowns was very low. The calculated $C$ (well head loss coefficient) and $P$ (well head loss exponent) value of well head losses ($CQ^p$) ranged $3.689{\times}10^{-19}{\sim}5.825{\times}10^{-7}$ and 3.459~8.290, respectively. It appeared that the deeper depth in pumping well the larger drawdowns due to pumping rate increase. The well head loss in the fractured rocks, unlike that in porous media, is affected by properties of fractures (fractures of aperture, spacing, and connection) around pumping well. The $C$ and $P$ value in the well head loss is very important to interpret turbulence interval and properties of high or low permeability of fractured rock. As a result, regression analysis of $C$ and $P$ value in the well head losses identified the relationship of turbulence interval and hydraulic properties. The relationship between $C$ and $P$ value turned out very useful to interpret hydraulic properties of the fractured rocks.

Estimation of Soil Loss into Sap-Gyo Reservoir Watershed using GIS and RUSLE (GIS와 RUSLE 기법을 이용한 삽교호유역의 토사 유실량 산정)

  • Kim, Man-Sik;Jung, Seung-Kwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.4
    • /
    • pp.19-27
    • /
    • 2002
  • Prediction of exact soil loss yield has as important engineering meaning as prediction of exact flow measurement in a stream. The quantity of soil loss in a stream should be considered in planning and management of water resources and water quality such as design and maintenace of hydraulic structures : dams, weirs and seawalls, channel improvement, channel stabilization, flood control, design and operation of reservoirs and design of harbors. In this study, the soil loss of Sap-gyo reservoir watershed is simulated and estimated by RUSLE model which is generally used in the estimation of soil loss. The parameters of RUSLE model are selected and estimated using slope map, landuse map and soil map by GIS. These parameters are applied to RUSLE's estimating program. And soil loss under probability rainfall in different frequencies are estimated by recent 30 years of rainfall data of Sap-gyo reservoir watershed.

  • PDF

Development of Friction Torque Measurement Device for Spherical Hydrostatic Bearing (구면 정압베어링의 마찰토크 측정장치 개발)

  • 함영복;최영호;박경민;윤소남;김광영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.181-186
    • /
    • 2002
  • Lately, as going on increasing in the demand of high power density(power/weight), it is necessary for hydraulic axial piston pump/motor to operate more high pressure and speed. But in these condition, there are some trouble like as friction loss. To reduce this friction loss, hydrostatic bearing is used far axial piston pump/motor frequently. In general, it is difficult to measure accurate friction torque of spherical hydrostatic bearing in the use of the existing devices. So, we have developed the measurement device using the reaction torque sensor to obtain the pure friction torque, fitted in the casing. In this report, we intend to make an introduction about this measurement device for friction torque of the spherical wear part and clarify the effect of friction characteristics on supply pressure and rotational speed with three types of pocket size by using this measurement device.

  • PDF

A Loss-of-RHR Event under the Various Plant Configurations in Low Power or Shutdown Conditions

  • Seul, Kwang-Won;Bang, Young-Seok;Lee, Sukho;Kim, Hho-Jung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.551-556
    • /
    • 1997
  • A present study addresses a loss-of-RHR event as an initiating event under specific low power or shutdown conditions. Two typical plant configurations, cold leg opening case with water-filled steam generators and pressurizer opening case with emptied steam generators, were evaluated using the RELAP5/ MOD3.2 code. The calculation was compared with the experiment conducted at ROSA-IV/LSTF in Japan. As a result, the code was capable of simulating the system transient behavior following the event. Especially, thermal hydraulic transport processes including non-condensable gas behavior were reasonably predicted with an appropriate time step and CPU time. However, there were some code deficiencies such as too large system mass errors and severe flow oscillations in core region.

  • PDF

An Evaluation of Operator's Action Time for Core Cooling Recovery Operation in Nuclear Power Plant (원자력발전소의 노심냉각회복 조치에 대한 운전원 조치시간 평가)

  • Bae, Yeon-Kyoung
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.229-234
    • /
    • 2012
  • Operator's action time is evaluated from MAAP4 analysis used in conventional probabilistic safety assessment(PSA) of a nuclear power plant. MAAP4 code which was developed for severe accident analysis is too conservative to perform a realistic PSA. A best-estimate code such as RELAP5/MOD3, MARS has been used to reduce the conservatism of thermal hydraulic analysis. In this study, operator's action time of core cooling recovery operation is evaluated by using the MARS code, which its Fussell-Vessely(F-V) value was evaluated as highly important in a small break loss of coolant(SBLOCA) event and loss of component cooling water(LOCCW) event in previous PSA. The main conclusions were elicited : (1) MARS analysis provides larger time window for operator's action time than MAAP4 analysis and gives the more realistic time window in PSA (2) Sufficient operator's action time can reduce human error probability and core damage frequency in PSA.

Effect of Nozzle Shape on the Performance and Internal Flow of a Cross-Flow Hydro Turbine (횡류수차 노즐형상이 성능과 내부유동에 미치는 영향)

  • Choi, Young-Do;Lim, Jae-Ik;Kim, You-Taek;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.4
    • /
    • pp.45-51
    • /
    • 2008
  • The purpose of this study is to examine the effect of nozzle shape on the performance and internal flow of a cross-flow hydro turbine. CFD analysis for three kinds of nozzle shape is conducted to simulate the effect of nozzle shape. The results reveal that relatively narrow nozzle width is effective to increase the turbine efficiency and output power. Almost output power is achieved at Stage 1. Therefore, optimum design of the nozzle shape is necessary to improve the turbine performance. Recirculation flow in the runner passage decreases the turbine efficiency and output power because the flow make hydraulic loss and collision loss in the region. Air should be put into the runner passage and the recirculating flow should be suppressed by the air layer in the runner.

Efficiency Increase and Input Power Decrease of Converted Prototype Pump Performance

  • Oshima, Masao
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.205-212
    • /
    • 2016
  • The performance of a prototype pump converted from that of its model pump shows an increase in efficiency brought about by a decrease in friction loss. As the friction force working on impeller blades causes partial peripheral motion on the outlet flow from the impeller, the increase in the prototype's efficiency causes also a decrease in its input power. This paper discusses results of analyses on the behavior of the theoretical head or input power of a prototype pump. The equation of friction-drag coefficient for a flat plate was applied for the analysis of hydraulic loss in impeller blade passages. It was revealed that the friction-drag of a flat plate could be, to a certain degree, substituted for the friction drag of impeller blades, i.e. as a means for analyzing the relationship between a prototype pump's efficiency increase and input power decrease.

RELAP5/MOD3 Assessment Against a ROSA-IV/LSTF Loss-of-RHRS Experiment

  • Park, Chul-Jin;Han, Kee-Soo;Lee, Cheol-Sin;Kim, Hee-Cheol;Lee, Sang-Keun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.745-750
    • /
    • 1996
  • An analysis of a loss of residual heat removal system (RHRS) event during midloop operation after reactor shutdown was performed using the RELAP5/MOD3 thermal-hydraulic computer code. The experimental data of a 5% cold leg break test conducted at the ROSA-IV Large Scale Test Facility (LSTF) to simulate a main coolant pump shaft seal removal event during midloop operation of a Westinghouse-type PWR were used in the analysis. The predicted core boiling time and the peak primary system pressure showed good agreements with the measured data. Some differences between the calculational results and the experimental results were, however, found in areas of the timing of loop seal clearing and the temperature distribution in a pressurizer. Other calculational problems identified were discussed as well.

  • PDF

CRACK INITIATION AND PROPAGATION OF BLADES FRACTURE MECHANICS APPROACH

  • Rao, J. S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.02a
    • /
    • pp.11-28
    • /
    • 1998
  • Crack initiation and propagation of blades is a serious matter in turbomachinery. Outages are common due to these problems that occur during the service of the machine resulting in a huge loss of revenue. Once in a while, the problems become serious and cause major shutdowns which can in some cases result in the loss of the whole machine in a catastrophic manner. In this presentation, we will discuss the crack initiation studies of a hydraulic machine runner blade by local stress strain approach and crack propagation at the root of a low pressure stage steam turbine blade by means of stress intensity factor approach. In both the cases, we will show how the present day technologies can predict actual field observations.

  • PDF