• Title/Summary/Keyword: Hydraulic Leakage

Search Result 207, Processing Time 0.022 seconds

Oil Leak Analysis using Simulation Model of Hydraulic System for Dental Chair (치과용 유니트체어 유압구동 시스템 해석모델을 활용한 누유량 분석)

  • Dae Kyung Noh;Dong Won Lee;Jae Yong Kim;Joo Sup Jang
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.35-44
    • /
    • 2023
  • This study aimed to analyze the performance of hydraulic systems for dental chair when long working hours makes the temperature of hydraulic fluid rise. The study was carried out in the following manner. First, 'cylinder's clearance' was reflected in the three kinds of hydraulic circuits, which were developed through the preceding study, in order to analyze oil leak. Second, 12 cases of simulations comprised of the up and down of cylinders were carried out. Third, it was determined whether the cylinder velocity of dental chair surpasses 1cm/s required in the development even in the hydraulic fluid temperature of 60℃. In conclusion, this study used SimulationX to verify the performance stability at high temperatures using three types of hydraulic circuits designed to develop a Korean unit chair.

Characteristics of Lightweight Hydraulic Directional Control Valve for Emergency Steering in Hybrid Electric Commercial Vehicles (하이브리드 상용차용 경량 비상조향장치 유압방향제어밸브의 성능특성 연구)

  • Park, Kyungmin
    • Tribology and Lubricants
    • /
    • v.29 no.5
    • /
    • pp.291-297
    • /
    • 2013
  • Hydraulic directional control valves actuated by solenoid are used to control emergency steering in general or hybrid electric commercial vehicles. In this study, a new lightweight hydraulic directional control valve was designed by flow and structural simulation, and was fabricated; the basic operation, pressure differentials, and inner leakage flow were evaluated experimentally. In the results, the new model showed comparable performance with an existing imported valve. New valve was 80% the weight of the existing valve and had few components. Installing this valve on a truck body is easier because of its compactness and small size.

Hydraulic Parameter Evaluation by Sensitivity Analysis of Constant and Variable Rate Pump Test in Leaky Fractal Aquifer (누수성 프락탈 대수층내의 일정 또는 다단계 양수시험의 민감성 분석에 의한 수리상수 결정)

  • 함세영
    • The Journal of Engineering Geology
    • /
    • v.4 no.3
    • /
    • pp.311-319
    • /
    • 1994
  • This paper presents a sensitivity analysis to obtain best fit of hydraulic parameters of leaky fractal aquifer. The sensitivity analysis uses the least squares method. The hydraulic parameters (generalized transmissivity and generalized storage coefficient) can be easily determined by the sensitivity analysis for various flow dimensions and different values of the leakage factor. Furthermore, the sensitivity analysis was applied to variable-rate pump tast at several abstraction wells, A computer program was developed to evaluate the hydraulic parameters by the sensitivity analysis.

  • PDF

A Study of Safety Acquirement for an Assessment of Ultra High Pressure System (초고압 시스템의 안전성 확보에 대한 연구)

  • Lee, Gi-Chun;Kim, Hyoung-Eui;Kim, Jae-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.5
    • /
    • pp.7-14
    • /
    • 2010
  • Ultra high pressure system, which can be generally increased over 1,000bar, needs to have sealing mechanism to protect leakage and selection of the materials used in the intensifier. Components such as pressure vessel, hydraulic hose assembly, accumulator, hydraulic cylinder, hydraulic valve, pipe, etc., are tested under the impulse-pressure conditions. Components need to be tested under 1.5 to 3 times of rated pressure to check the tolerance even though rated pressure range of these components are not ultra high pressure. So, the ultra high pressure system needs to be equiped to test components. In this study, safety assessments of ultra high pressure system which are using failure analysis of components, changing the types of the control system, and finite element analysis with static condition, are investigated.

Effect of Piston Shape on the Lubrication Characteristics of Hydraulic Piston Pump and Motor (피스톤 형상이 유압피스톤 펌프$cdot$모터의 윤활특성에 미치는 영향)

  • 이정오;박태조
    • Tribology and Lubricants
    • /
    • v.10 no.3
    • /
    • pp.47-53
    • /
    • 1994
  • Thin film flow in the clearance between cylinder bore and axially moving compositeshape piston is analyzed to study the effect of piston shape on the lubrication characteristics of hydraulic piston pump and motor. It is shown that the piston shape significantly affect the distribution of fluid film pressure, lateral force acting on the piston and leakage flow rate in the clearance. And it is also shown that the composite-shape piston is more effective than the cylindrical piston under tilted condition to reduce the possibility of hydraulic locking. Therefore, the results of present study can be used usefully in the design-and manufacturing of hydraulic piston pump and motor.

A Study on Wear Property of Oil Hydraulic Piston Pump Material (유압 피스톤 펌프 소재의 마모 특성에 관한 연구)

  • Kim, Nam-Soek;Kim, Hyun-Soo;Seong, Ki-Yong;Ahn, Seok-Hwan;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.30-34
    • /
    • 2009
  • Oil hydraulic piston pumps are being extensively used in the world, because of simple design, light weight and effective cost etc. An oil hydraulic pump is likely to have serious problems of high leakage, friction and low energy efficiency according to large time use. In the oil hydraulic piston pumps the clearance between the valve block and piston plays an important role for volumetric and overall efficiency. In this paper, the wear property of the SACM645 material used the hydraulic piston pump has been work out by experimentation with variable heat treatment. To investigate the effect according to the piston surface condition, seven different types specimen were prepared. From the wear test results, induction hardening and nitration were definitely superior to the others. On the whole, nitration was estimated for high strength material to wear resistance.

Swelling and hydraulic characteristics of two grade bentonites under varying conditions for low-level radioactive waste repository design

  • Chih-Chung Chung;Guo-Liang Ren;I-Ting Chen;Che-Ju, Cuo;Hao-Chun Chang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1385-1397
    • /
    • 2024
  • Bentonite is a recommended material for the multiple barriers in the final disposal of low-level radioactive waste (LLW) to prevent groundwater intrusion and nuclear species migration. However, after drying-wetting cycling during the repository construction stage and ion exchange with the concrete barrier in the long-term repository, the bentonite mechanical behaviors, including swelling capacity and hydraulic conductivity, would be further influenced by the groundwater intrusion, resulting in radioactive leakage. To comprehensively examine the factors on the mechanical characteristics of bentonite, this study presented scenarios involving MX-80 and KV-1 bentonites subjected to drying-wetting cycling and accelerated ion migration. The experiments subsequently measured free swelling, swelling pressure, and hydraulic conductivity of bentonites with intrusions of seawater, high pH, and low pH solutions. The results indicated that the solutions caused a reduction in swelling volume and pressure, and an increase in hydraulic conductivity. Specifically, the swelling capability of bentonite with drying-wetting cycling in the seawater decreased significantly by 60%, while hydraulic conductivity increased by more than three times. Therefore, the study suggested minimizing drying-wetting cycling and preventing seawater intrusion, ensuring a long service life of the multiple barriers in the LLW repository.

Internal Flow and Performance Characteristics According to the Runner Gap of a Francis Turbine Model (프란시스 수차 모델의 러너 간극에 따른 내부유동 및 성능 특성)

  • KIM, SEUNG-JUN;CHOI, YOUNG-SEOK;CHO, YONG;CHOI, JONG-WOONG;HYUN, JUNG-JAE;JOO, WON-GU;KIM, JIN-HYUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.3
    • /
    • pp.328-336
    • /
    • 2020
  • In the Francis turbine, the leakage flow through the runner gaps which are between the runner and the stator structure influences the internal flow and hydraulic performance. Thus, the investigation for the flow characteristics induced by the runner gaps is important. However, the runner gaps are often disregarded by considering the time and cost of the numerical analysis. Therefore, in this study, the flow characteristics according to runner gaps of the Francis turbine model were investigated including the leakage flow of the runner cone. The three-dimensional unsteady Reynolds-averaged Navier-Stokes analyses were conducted using a scale-adaptive simulation shear stress transport as a turbulence model for observing the influence of the leakage flow on the internal flow and hydraulic performance. The efficiencies were decreased slightly with runner gaps; and the complicated flows were captured in the gaps.

A Stud on the Estimation of Leakage and the probing Leakage in the River Bank (하천제방의 누수탐사 및 누수량 평가에 관한 연구)

  • 김경수;조기태
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.213-217
    • /
    • 1999
  • The river bank is one of the most important structure of fluvial hydraulic structure. Because the breaking of river bank is the cause of calamity, the durability and stability of river bank an very important factors. The breaking of river bank is the cause of the overflow of flood and the leakage of river bank. In this study, we investigated the leakage of river bank using the resistivity probing and estimated the volume of leakage using the weighted residual method The study basin of this study is the upstream of Sumji river basin and the factor of river bank is length 300 m and berm 2.0 m and width 4.5 m and height 4 m. We evaluated the leakage of river basin using using the resistivity probing and estimated the leakage volume using the weighted residual method. The result of this study, the leakage of river bank generated at the point of 39~45 m 80~90 m. 218~222 m. 214~250 m and the type of leakage is the rectangle and the polygon. And the leakage volume of this points evaluated 2.7$\times$$10^{-3}$ $\textrm{m}^3$/sec.

  • PDF

Thermo-hydraulic Numerical Analysis for the Leakage of Buried District Heating Pipe (열수송관의 누수에 대한 열-수리적 수치해석)

  • Shin, Hosung;Hong, Seung-Seo
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.3
    • /
    • pp.17-26
    • /
    • 2022
  • Domestic district heating system needs safety management guidelines using the change of surface temperature to detect damages to buried heat pipes. This paper performed numerical analyses on the temperature change of ground surface due to the burial and leakage of heat pipes. Temperature difference between the ground surface above the buried heat pipes and the surrounding surface rises to a crescendo between 3 am and 8 am. It is more significant in winter rather than in summer. Low groundwater level magnifies the temperature increase of the ground surface by the heat pipe, which is smaller in the asphalt pavement than in the bare soil. Without leakage of the buried heat pipe, the temperature increment on the ground surface by the heat pipe is within 3.0℃ in the bare soil and 3.5℃ in the asphalt pavement. Leakage of the supply heat pipe in the bare soil increases the temperature on the ground surface gradually in the summer but rapidly in the winter. Asphalt pavement shows a lower increment and increasing rate of the temperature on the ground surface due to pipe leakage than bare soil surface. And leakage on both sides of the supply pipe takes 1-2 days for the temperature difference from the surrounding soil surface to reach 10℃.