• 제목/요약/키워드: Hydraulic Forces

검색결과 196건 처리시간 0.022초

전기-유압 액추에이터를 이용한 굴삭기 에너지 절감에 관한 기초 연구 (A study on Energy Saving of the Excavator using Electro-Hydraulic Actuator)

  • 윤홍수;안경관;이병룡;강종민;김재홍
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.801-805
    • /
    • 2008
  • Today, hydraulic systems play an important role in modern industry for the reasons that hydraulic actuator systems take many advantages over other technologies with high durability and the ability to produce large forces at high speeds. In recent years, electro-hydraulic actuator systems, which combine electric and hydraulic technology into a compact unit, have been adapted to a wide variety of force, speed and torque requirements. Moreover these systems resolve energy consumption and noise problems characteristic existed in the conventional hydraulic systems. Therefore, these systems have a wide range application fields especially in an excavator. So the purpose of this paper is to demonstrate efficiency of the energy saving and present some control algorithms which apply to electro-hydraulic actuator system in the bucket of the excavator. Experiments are carried out to verify the effectiveness of the proposed system with various external loads as in real working conditions.

  • PDF

자동차용 유압베인펌프의 고속에서 베인과 캠링간의 이간현상 (The Separation of the Vane and the Camring at high speed of an Oil Hydraulic Vane Pump for Automobile)

  • 조인성;백일현;정재연
    • Tribology and Lubricants
    • /
    • 제26권2호
    • /
    • pp.136-141
    • /
    • 2010
  • In an oil hydraulic vane pump for an automobile, it is very important that the vane doesn't separate from the camring inner race during the operation of the vane pump. The vane generally has not only the oil hydraulic force acting on the bottom face to contact to camring inner race but there is also an inertial force and viscous force. Because the oil hydraulic force is much larger than the other forces, the contact state between the vane tip and the camring inner race is sufficient. However, the contact state between the vane tip and the camring inner race is only affected by the inertial and viscous forces during the delivery of the vane pump, because the oil hydraulic force acting on the vane is in equilibrium. If the inertial force is larger than the viscous force, which happens when the vane is separated from the camring inner race, the delivery of the vane pump can become unstable or the volume efficiency can become decrease rapidly. Therefore, in this paper, the state of the contact between the vane and the camring is considered. The results show that the rotating speed of the shaft, the operating temperature of the oil, the clearance between the vane and the rotor, and the mass of the vane exert a great influence on the state of the contact between the vane and the camring.

DNS of vortex-induced vibrations of a yawed flexible cylinder near a plane boundary

  • Zhang, Zhimeng;Ji, Chunning;Alam, Md. Mahbub;Xu, Dong
    • Wind and Structures
    • /
    • 제30권5호
    • /
    • pp.465-474
    • /
    • 2020
  • Vortex-induced vibrations of a yawed flexible cylinder near a plane boundary are numerically investigated at a Reynolds number Ren= 500 based on normal component of freestream velocity. Free to oscillate in the in-line and cross-flow directions, the cylinder with an aspect ratio of 25 is pinned-pinned at both ends at a fixed wall-cylinder gap ratio G/D = 0.8, where D is the cylinder diameter. The cylinder yaw angle (α) is varied from 0° to 60° with an increment of 15°. The main focus is given on the influence of α on structural vibrations, flow patterns, hydrodynamic forces, and IP (Independence Principle) validity. The vortex shedding pattern, contingent on α, is parallel at α=0°, negatively-yawed at α ≤ 15° and positively-yawed at α ≥ 30°. In the negatively- and positively-yawed vortex shedding patterns, the inclination direction of the spanwise vortex rows is in the opposite and same directions of α, respectively. Both in-line and cross-flow vibration amplitudes are symmetric to the midspan, regardless of α. The RMS lift coefficient CL,rms exhibits asymmetry along the span when α ≠ 0°, maximum CL,rms occurring on the lower and upper halves of the cylinder for negatively- and positively-yawed vortex shedding patterns, respectively. The IP is well followed in predicting the vibration amplitudes and drag forces for α ≤ 45° while invalid in predicting lift forces for α ≥ 30°. The vortex-shedding frequency and the vibration frequency are well predicted for α = 0° - 60° examined.

원심펌프 회전축계의 불평형 응답에 미치는 유체력의 영향 (Effects of Hydraulic Force on the Unbalance Vibration of Centrifugal Pump Rotors)

  • 양보석;최원호
    • Tribology and Lubricants
    • /
    • 제2권2호
    • /
    • pp.20-26
    • /
    • 1986
  • The paper presents an analytical investigation of the unbalance vibrations of a pump rotor. The analysis applies to rotor-bearing-seal-impeller systems which consist of rigid disks, distributed parameter rotor elements and discreate bearings, seals, and impellers. The dynamic hydraulic force of bearing, seal and impeller elements are represented by four stiffness coefficients arid four damping coefficients. Numerical results are presented for unbalance response associated with various kinds bearing, and with effects of seal and impeller forces.

시일이 없는 유압 실린더용 피스톤의 이론해석 (Theoretical Analysis of Sealless Piston for Hydraulic Cylinders)

  • 박태조
    • 유공압시스템학회논문집
    • /
    • 제3권3호
    • /
    • pp.1-7
    • /
    • 2006
  • In this paper, a theoretical analysis is carried out to study the lubrication characteristics of sealless piston for hydraulic cylinders. The analytical pressure distributions are obtained solving one-dimensional Reynolds equation with partially tapered moving piston. Nearly analytical expressions for lateral forces acting on the piston and leakage flow rate through the clearance are also presented. Using the analytical expressions, the influence of design parameters on lubrication characteristics can be easily evaluated without numerical analysis. Composite-shaped piston which minimizes the leakage flow rate is the optimum in sealless piston for hydraulic cylinder.

  • PDF

미끄럼방지 제동장치용 솔레노이드 밸브의 맥동특성 해석 (Analysis on the Surge Characteristics of the Solenoid Valve for Anti-Lock Brake System)

  • 김병우;박호
    • 전기학회논문지
    • /
    • 제59권11호
    • /
    • pp.2083-2088
    • /
    • 2010
  • It is necessary to carry out quantitative analysis for the ABS hydraulic modulator to upgrade the system performances. Mathematical modeling method for the ABS hydraulic modulator, is suggested in the view of electromagnetism and fluid mechanics. Also, an analytic method is proposed for the resultant forces of electromagnetism and hydraulic pressure generated in the real vehicle ABS. The relationships between the design factor of Inlet & outlet solenoid valve and the system performance of ABS, are investigated through the analytical precess.

Adaptive Control of a Single Rod Hydraulic Cylinder - Load System under Unknown Nonlinear Friction

  • Lee Myeong-Ho;Park Hyung-Bae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권3호
    • /
    • pp.251-259
    • /
    • 2005
  • A discrete time model reference adaptive control has been applied in order to compensate the nonlinear friction characteristics in a hydraulic proportional position control system. As nonlinear friction, static and coulomb friction forces are considered and modeled as dead zone and external disturbance respectively. The model reference adaptive control system consists of a cascade combination of the dead zone. external disturbance and linear dynamic block. For adaptive control experiment. the DSP(Digital Signal Processor) board has been interfaced the hydraulic proportional position control system. The experimental results show that the MRAC(Model Reference Adaptive Control) for compensation of static and coulomb friction are very effective.

터널굴진율이 막장에서의 침투력에 미치는 영향에 관한 연구 (Effect of Tunnel Advance Rate on the Seepage Forces Acting on the Tunnel Face)

  • 남석우;이인모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.327-333
    • /
    • 2002
  • In this study, the effect of tunnel advance rate on the seepage forces acting on the tunnel face was studied. The finite element program to analyze the groundwater flow around a tunnel with the consideration of tunnel advance rate was developed. Using the program, the parametric study for the effect of the tunnel advance rate and hydraulic characteristics of the ground on the seepage forces acting on the tunnel face was studied. From this study, it was concluded that the tunnel advance rate must be taken into consideration as an additional parameter to assess the seepage forces at the tunnel face and a rational design methodology for the assessment of support pressures required for maintaining the stability of the tunnel face was suggested for underwater tunnels.

  • PDF

침투력을 고려한 사면안정의 이론적 해석 (The Theoritical Analysis of the Slope Stability subjected to Seepage Force)

  • Gi-Bong Choi
    • 한국안전학회지
    • /
    • 제11권4호
    • /
    • pp.151-155
    • /
    • 1996
  • 사면안정 해석에 있어서 기존의 연구는 대부분 침투력의 값을 고려하지 않고 안전율을 계산하여 왔다. 그러나 비정상 침투시 침투력은 안전율에 많은 영향을 미친다. 따라서 본 연구에서는 사면안정해석에 있어서 침투력의 영역이 사면의 안전율에 미치는 영향이 큰 것을 확인하기 위해서 Bishop's Simplified Method를 이용하여 이론적으로 침투력을 고려한 안전율계산 수식을 유도하였다. 사면안정 이론식의 전개방법은 제체에 침윤선이 형성될 경우 침윤선을 기준으로 각 절편을 수중상태와 습윤상태로 구분하고, 이 습윤상태의 절편토체에 작용하는 침투력을 고려하여 사면안정수식을 해석했다.

  • PDF

파랑.흐름 공존장에서의 철도차량 인공어초의 수리학적 특성 (Hydraulic Characteristics of Train Carriage Artificial Reef in Wave and Current Field Conditions)

  • 손병규;이병호;윤한삼
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권1호
    • /
    • pp.108-117
    • /
    • 2011
  • 본 연구에서는 해양수산자원 및 레크리에이션 증진을 위한 프로그램의 일부로 개발된 철도차량 인공어초의 수리학적 안정성 평가를 위해 수리모형실험을 수행하였다. Froude 상사법칙을 적용한 고정상 및 이동상 수리모형실험에서는 설계외력(파랑, 흐름 등)에 상당하는 조건에 따라 이론적/실험적 검토를 수행하였다. 실험결과로서 파랑-흐름공존장에서 어초의 안정성에 영향을 미치는 무차원 영향인자(설계파라메타)로서 쇄파상사지수, 수립자속도, 세굴/퇴적 등이 있으며, 고정상 실험에서 어초의 활동을 일으키는 한계조건은 쇄파상사지수에 따라서 무차원 최대수립자속도가 약 0.32 이상일 때 나타났다. 또한 이동상 실험에서 침하량(현장치)은 6~30cm이었다. 실험결과를 바탕으로 어초의 활동에 작용하는 외력의 방향과 저질 특성이 어초 시설적지를 선정할 때 반드시 고려되어야 함을 알 수 있었다.