• Title/Summary/Keyword: Hydraulic Evaluation

Search Result 655, Processing Time 0.11 seconds

Feasibility Evaluation for Remediation of Groundwater Contaminated with Heavy Metal using Calcium Polysulfide in Homogeneous media (균질한 매질 내 Calcium polysulfide 주입에 따른 고농도 중금속 오염 지하수 정화 타당성 검토)

  • Hyeon Woo Go;Jin Chul Joo;Kyoungphile Nam;Hee Sun Moon;Sung Hee Yoon;Dong Hwi Lee;So Ye Jang
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • In this study, column tests using relatively uniform Jumunjin sand media were conducted to evaluate the feasibility of calcium polysulfide (CaSx, CPS) in removing high concentration of Zn2+ in groundwater. The injected CPS solution reacted rapidly with Zn2+ in artificial groundwater and effectively reduced Zn2+ by more than 99% through metal sulfide precipitation. Since the density (d = 1.27 g/cm3 ) of CPS solution was greater than that of water, CPS solution settled down rapidly while capturing Zn2+ and formed stable CPS layer similar to dense nonaqueous phase liquid. Mass balance analysis on Zn2+ in CPS solution suggested that CPS solution effectively reacted with Zn2+ to form metal sulfide precipitates except for high groundwater seepage velocity of 400 cm/d. With greater groundwater seepage velocity, injected CPS did not completely dissolve at the CPS-water interface, but a partially-misible CPS layer continuously moved and reacted with Zn2++ in the direction of groundwater flow. Since hydraulic conductivity (Kh) decreased slightly due to the generated metal precipitates in the inter-pores of media, injection of CPS solution should be optimized to prevent clogging. As evidenced by both XRF and SEM/EDS results, ZnS precipitates were clearly observed through the reaction between the CPS solution and Zn2+. Further study is warranted to evaluate the feasibility of CPS to remove high-concentration heavy metalcontaminated groundwater in complex and heterogeneous media.

Evaluation of Structural Integrity of Aircraft External Fuel Tank for Separation Loads (분리하중에 대한 항공기용 외부연료탱크 구조 건전성 평가)

  • Hyun-gi Kim;Sungchan Kim;Min-su Park;Su-hong An
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.64-71
    • /
    • 2024
  • The external fuel tank of an aircraft is a main component that can increase the cruising range of the aircraft. It must be able to be stably separated from the pylon in an emergency situation. At this time, a separation load is applied to the fin and the pivot of the external fuel tank. To stably separate the external fuel tank, the structural soundness of the fin and the pivot must be confirmed. In this study, structural tests were conducted to verify the structural integrity of the external fuel tank pin and pivot when the external fuel tank was separated from the aircraft. Results are then presented. In this paper, a test configuration diagram consisting of the hydraulic and load control equipment, data acquisition system, and pneumatic supply unit used in the structural test was explained. Test installation and test load application plan for each test condition were provided. As results of the structural test, it was found that test load and internal pressure of the test specimen were properly controlled within the allowable range in each test. It was confirmed that serious structural defects in the test specimen did not occur under required load conditions. In conclusion, through structural test for design limit load and design ultimate load, it was proven that the fin and pivot of the external fuel tank for aircraft covered in this study had sufficient structural strength.

Application of BASINS/WinHSPF for Pollutant Loading Estimation in Soyang Dam Watershed (소양강댐 유역의 오염부하량 산정을 위한 BASINS/WinHSPF 적용)

  • Yoon, Chun-Gyeong;Han, Jung-Yoon;Jung, Kwang-Wook;Jang, Jae-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.201-213
    • /
    • 2007
  • In this study, the Batter Assessment Science Integrating point and Nonpoint Sources (BASINS 3.0)/window interface to Hydrological Simulation Program-FPRTRAN (WinHSPF) was applied for assessment of Soyang Dam watershed. WinHSPF calibration was performed using monitoring data from 2000 to 2004 to simulate stream flow. Water quality (water temperature, DO, BOD, nitrate, total organic nitrogen, total nitrogen, total organic phosphorus and total phosphorus) was calibrated. Calibration results for dry-days and wet-days simulation were reasonably matched with observed data in stream flow, temperature, DO, BOD and nutrient simulation. Some deviation in the model results were caused by the lack of measured watershed data, hydraulic structure data and meteorological data. It was found that most of pollutant loading was contributed by nonpoint source pollution showing about $98.6%{\sim}99.0%$. The WinHSPF BMPRAC was applied to evaluate the water quality improvement. These scenarios included constructed wetland for controlling nonpoint source poilution and wet detention pond. The results illustrated that reasonably reduced pollutant loadin. Overall, BASINS/WinHSPF was found to be applicable and can be a powerful tool in pollutant loading and BMP efficiency estimation from the watershed.

Performance Evaluation of Anaerobic Bioreactors in Treating Swine Wastewater (양돈폐수 처리를 위한 혐기성 생물반응기의 성능 비교)

  • Kim, Jong-Soo;Lee, Gook-Hee;Sa, Tongmin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.2047-2058
    • /
    • 2000
  • The effects of operating parameters on performance of upflow anaerobic sludge blanket(UASB). anaerobic filter(AF), and two-stage anaerobic sludge bed filter (ASBF) bioreactors in treating swine wastewater were evaluated by operating the lab-scale bioreactors upto hydraulic retention time(HRT) of 1 day and organic loading rate (OLR) of $5.1kg-COD/m^3{\cdot}d$ for 200 days. Swine wastewaters of which characteristics were affected by types of hog raising and seasons contained high concentrations of COD, SS, and ammonia. Inoculation of the bioreactors with waste sludge from anaerobic treatment facility of local municipal wastewater treatment plant was effective in developing biomass in the bioreactors. Acclimation period of the bioreactors with swine wastewaters required approximately 40 days, but that for AF and two-stage ASBF, which were filled with media, was faster than VASB. The bioreactors showed high and stable COD removal efficiency of 77~91% at influent T-N concentrations of 370~800mg/L but low and unstable COD removal efficiency of 24~94% at influent T-N concentrations of 760~1,310mg/L. It is essential to remove ammonia prior to anaerobic treatment since the concentrations of ammonia in swine wastewaters showed toxic effects to methanogenic bacteria. The bioreactors were effective in treating swine wastewaters with COD removal efficiency of 78.9~81.5% and biogas generation rate of $0.39{\sim}0.59m^3/kg-COD_r$ at OLR of $1.1{\sim}2.2kg-COD/m^3{\cdot}d$: however, an increase of OLR by reducing HRT and increasing influent COD caused decrease of COD removal efficiency. The extent of decrease in COD removal efficiency was higher in UASB than AF and two-stage ASBF. AF and two-stage ASBF anaerobic bioreactors were effective in treating varing characteristics of swine wastewaters since they showed high and stable COD removal efficiency at high OLR due to effective retention of biomass by media and staging.

  • PDF

A Study on Process Optimization for CSOs Application of Horizontal Flow Filtration Technology (수평흐름식 여과기술의 CSOs 적용을 위한 공정 최적화 연구)

  • Kim, Jae-Hak;Yang, Jeong-Ha;Lee, Young-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.56-63
    • /
    • 2018
  • The management of Combined Sewer Overflows(CSOs) and Separated Sewer Overflows(SSOs) discharge directly to the effluent system in an untreated state, which occurs when the facility capacity is exceeded due to heavy rain, has become an important issue in recent years as the heavy rain becomes a regular phenomenon. Despite the continuous development of filtration technology, targeting densely populated urban areas, CSOs are rarely applied. Therefore, this study was carried out to optimize the process to apply CSOs in a pilot-scale horizontal flow filtration system with a rope-type synthetic fiber. The research was carried out in two steps: a preliminary study using artificial samples and a field study using sewage. In the preliminary study using an artificial sample, head loss of the filter media itself was analyzed to be approximately 1.1cm, and the head loss was increased by approximately 0.1cm as the linear velocity was increased by 10m/hr. In addition, the SS removal efficiency was stable at 81.4%, the filtration duration was maintained for more than 6 hours, and the average recovery rate of 98% was obtained by air backwashing only. In the on-site evaluation using sewage, the filtration duration was approximately 2 hours and the average removal efficiency of 83.9% was obtained when belt screen (over 450 mesh) was applied as a pre-treatment process to prevent the premature clogging of filter media. To apply the filtration process to CSOs and SSOs, it was concluded that the combination with the pre-treatment process was important to reinforce the hydraulic dimension for the stable maintain of operation period, rather than efficiency. Compared to the dry season, the quality of incoming sewage was lower in the rainy season, which was attributed to the characteristics of the drainage area with higher sanitary sewerage. In addition, the difference in removal efficiency according to the influent quality of the wet season and dry season was small.

Performance Evaluation of Hydrocyclone Filter for Treatment of Micro Particles in Storm Runoff (Hydrocyclone Filter 장치를 이용한 강우유출수내 미세입자 제거특성 분석)

  • Lee, Jun-Ho;Bang, Ki-Woong;Hong, Sung-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.1007-1018
    • /
    • 2009
  • Hydrocyclone is widely used in industry, because of its simplicity in design, high capacity, low maintenance and operational cost. The separation action of a hydrocyclone treating particulate slurry is a consequence of the swirling flow that produces a centrifugal force on the fluid and suspended particles. In spite of hydrocyclone have many advantage, the application for treatment of urban stormwater case study were rare. We conducted a laboratory scale study on treatable potential of micro particles using hydrocyclone filter (HCF) that was a combined modified hydrocyclone with perlite filter cartridge. Since it was not easy to use actual storm water in the scaled-down hydraulic model investigations, it was necessary to reproduce ranges of particles sizes with synthetic materials. The synthesized storm runoff was made with water and addition of particles; ion exchange resin, road sediment, commercial area manhole sediment, and silica gel particles. Experimental studies have been carried out about the particle separation performance of HCF-open system and HCF-closed system. The principal structural differences of these HCFs are underflow zone structure and vortex finder. HCF was made of acryl resin with 120 mm of diameter hydrocyclone and 250 mm of diameter filter chamber and overall height of 800 mm. To determine the removal efficiency for various influent concentrations of suspended solids (SS) and chemical oxygen demand (COD), tests were performed with different operational conditions. The operated maximum of surface loading rate was about 700 $m^3/m^2$/day for HCF-open system, and 1,200 $m^3/m^2$/day for HCF-closed system. It was found that particle removal efficiency for the HCF-closed system is better than the HCF-open system under same surface loading rate. Results showed that SS removal efficiency with the HCF-closed system improved by about 8~20% compared with HCF-open system. The average removal efficiency difference for HCF-closed system between measurement and CFD particle tracking simulation was about 4%.

Performance Evaluation of Bio-Membrane Hybrid Process for Treatment of Food Waste Leachate (음식물 침출수 청정화를 위한 파일롯 규모의 생물-분리막 복합공정의 성능 평가 연구)

  • Lee, Myung-Gu;Park, Chul-Hwan;Lee, Do-Hoon;Kim, Tak-Hyun;Lee, Byung-Hwan;Lee, Jin-Won;Kim, Sang-Yong
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.90-95
    • /
    • 2008
  • In this study, a combined process of sequential anaerobic-aerobic digestion (SAAD), fluidized-bed bioreactor (FBBR), and ultrafiltration (UF) for the treatment of small scale food waste leachate was developed and evaluated. The SAAD process was tested for performance and stability by subjecting leachate from food waste to a two-phase anaerobic digestion. The main process used FBBR composed of aerators for oxygen supply and fluidization, three 5 ton reaction chambers containing an aerobic mesophilic microorganism immobilized in PE (polyethylene), and a sedimentation chamber. The HRTs (hydraulic retention time) of the combined SAAD-FBBR-UF process were 30, 7, and 1 day, and the operation temperature was set to the optimal one for microbial growth. The pilot process maintained its performance even when the CODcr of input leachate fluctuated largely. During the operation, average CODcr, TKN, TP, and salt of the effluent were 1,207mg/L, 100mg/L, 50 mg/L, and 0.01 %, which corresponded to the removal efficiencies of 99.4%, 98.6%, 89.6%, and 98.5%, respectively. These results show that the developed process is able to manage high concentration leachate from food waste and remove CODcr, TKN, TP, and salt effectively.

Evaluation of Correlation between Chlorophyll-a and Multiple Parameters by Multiple Linear Regression Analysis (다중회귀분석을 이용한 낙동강 하류의 Chlorophyll-a 농도와 복합 영향인자들의 상관관계 분석)

  • Lim, Ji-Sung;Kim, Young-Woo;Lee, Jae-Ho;Park, Tae-Joo;Byun, Im-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.5
    • /
    • pp.253-261
    • /
    • 2015
  • In this study, Chlorophyll-a (chl-a) prediction model and multiple parameters affecting algae occurrence in Mulgeum site were evaluated by statistical analysis using water quality, hydraulic and climate data at Mulgeum site (1998~2008). Before the analysis, control chart method and effect period of typhoon were adopted for improving reliability of the data. After data preprocessing step two methods were used in this study. In method 1, chl-a prediction model was developed using preprocessed data. Another model was developed by Method 2 using significant parameters affecting chl-a after data preprocessing step. As a result of correlation analysis, water temperature, pH, DO, BOD, COD, T-N, $NO_3-N$, $PO_4-P$, flow rate, flow velocity and water depth were revealed as significant multiple parameters affecting chl-a concentration. Chl-a prediction model from Method 1 and 2 showed high $R^2$ value with 0.799 and 0.790 respectively. Validation for each prediction model was conducted with the data from 2009 to 2010. Training period and validation period of Method 1 showed 20.912 and 24.423 respectively. And Method 2 showed 21.422 and 26.277 in each period. Especially BOD, DO and $PO_4-P$ played important role in both model. So it is considered that analysis of algae occurrence at Mulgeum site need to focus on BOD, DO and $PO_4-P$.

Evaluation of Chloride Diffusion Behavior and Analysis of Probabilistic Service Life in Long Term Aged GGBFS Concrete (장기 재령 GGBFS 콘크리트의 염화물 확산 거동 평가 및 확률론적 염해 내구수명 해석)

  • Yoon, Yong-Sik;Kim, Tae-Hoon;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.47-56
    • /
    • 2020
  • In this study, three levels of W/B(Water to Binder) ratio (0.37, 0.42, 0.47) and substitution ratio of GGBFS (Ground Granulated Blast Furnace Slag) rate (0 %, 30 %, 50 %) were considered to perform RCPT (Rapid Chloride Diffusion Test) at the 1,095 aged day. Accelerated chloride diffusion coefficient and passed charge of each concrete mixture were assessed according to Tang's method and ASTM C 1202, and improving behaviors of durability performance with increasing aged days are analyzed based on the test results of previous aged days from the preceding study. As the age of concrete increases, the passed charge and diffusion coefficient have been significantly reduced, and especially the concrete specimens containing GGBFS showed a significantly more reduction than OPC(Ordinary Portland Cement) concrete specimen by latent hydraulic activity. In the case of OPC concrete's results of passed charge, at the 1,095 days, two of them were still in the "Moderate" class. So, if only OPC is used as the binder of concrete, the resistance performance for chloride attack is weak. In this study, the time-parameters (m) were derived based on the results of the accelerated chloride diffusion coefficient, and the deterministic and probabilistic analysis for service life were performed by assuming the design variable as a probability function. For probabilistic service life analysis, durability failure probabilities were calculated using Monte Carlo Simulation (MCS) to evaluate service life. The service life of probabilistic method were lower than that of deterministic method, since the target value of PDF (Probability of Durability Failure) was set very low at 10 %. If the target value of PDF suitable for the purpose of using structure can be set and proper variability can be considered for each design variable, it is believed that more economical durability design can be made.

Debris flow characteristics and sabo dam function in urban steep slopes (도심지 급경사지에서 토석류 범람 특성 및 사방댐 기능)

  • Kim, Yeonjoong;Kim, Taewoo;Kim, Dongkyum;Yoon, Jongsung
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.8
    • /
    • pp.627-636
    • /
    • 2020
  • Debris flow disasters primarily occur in mountainous terrains far from cities. As such, they have been underestimated to cause relatively less damage compared with other natural disasters. However, owing to urbanization, several residential areas and major facilities have been built in mountainous regions, and the frequency of debris flow disasters is steadily increasing owing to the increase in rainfall with environmental and climate changes. Thus, the risk of debris flow is on the rise. However, only a few studies have explored the characteristics of flooding and reduction measures for debris flow in areas designated as steep slopes. In this regard, it is necessary to conduct research on securing independent disaster prevention technology, suitable for the environment in South Korea and reflective of the topographical characteristics thereof, and update and improve disaster prevention information. Accordingly, this study aimed to calculate the amount of debris flow, depending on disaster prevention performance targets for regions designated as steep slopes in South Korea, and develop an independent model to not only evaluate the impact of debris flow but also identify debris barriers that are optimal for mitigating damage. To validate the reliability of the two-dimensional debris flow model developed for the evaluation of debris barriers, the model's performance was compared with that of the hydraulic model. Furthermore, a 2-D debris model was constructed in consideration of the regional characteristics around the steep slopes to analyze the flow characteristics of the debris that directly reaches the damaged area. The flow characteristics of the debris delivered downstream were further analyzed, depending on the specifications (height) and installation locations of the debris barriers employed to reduce the damage. The experimental results showed that the reliability of the developed model is satisfactory; further, this study confirmed significant performance degradation of debris barriers in areas where the barriers were installed at a slope of 20° or more, which is the slope at which debris flows occur.