• Title/Summary/Keyword: Hydraulic Energy

Search Result 1,182, Processing Time 0.023 seconds

An Exploratory Research on PCC Application of Crystalline Limestone: Effects of Limestone Crystallographic Characteristicson Hydraulic Activity

  • Yang, Ye-Jin;Jegal, Yu-Jin;Nam, Seong-Young;Kim, Jin;Ahn, Ji-Whan
    • 한국세라믹학회지
    • /
    • 제51권2호
    • /
    • pp.115-120
    • /
    • 2014
  • Quicklime(CaO) is generally obtained through the calcination of limestone, the main component of which is calcium carbonate($CaCO_3$). Quicklime generates high-temperature heat when reacting with water, forming slaked lime($Ca(OH)_2$). The industrial sectors for limestone are determined by the hydraulic activity of slaked lime, which is obtained by measuring temperature changes during the hydration reaction. Accordingly, this study examined the different crystallographic characteristics of limestone as affected by the geological origins of the regions where the limestones were produced, and how these characteristics affected hydraulic activity. Six limestone samples were collected from the Jecheon and Cheongsong areas and the hydraulic activities were measured in accordance with KS E 3077. The results indicate that limestone produced in the Cheongsong area, recrystallized through metamorphism caused by hydrothermal alteration, hada larger grain size of calcite than that of the Jecheon area, and displays a tendency of changing to marble. Limestone from the Cheonsong area showed more radical reaction in the early stage of hydration compared to that ofthe Jecheon area. In addition, it was revealed that limestone having more impurities like $SiO_2$ have lower hydraulic activity.

프리필용 체크밸브의 유압진동 특성에 관한 연구 (A Study on the Hydraulic Vibration Characteristics of the Prefill Check Valve)

  • 박정우;한성민;이후승;윤소남
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권3호
    • /
    • pp.8-15
    • /
    • 2021
  • A rear axle steering (RAS) system is attached to the rear of medium and large commercial vehicles that transport large cargo. The existing RAS systems are driven by electro-hydraulic actuator (EHA), and most commercialized EHAs consist of electric motors, hydraulic pumps, relief valves, prefill valves and cylinders. The prefill valve required for such EHAs is a type of check valve with extremely low cracking pressure that should not allow RAS to have noise or vibration, and the prefill valve prevents system negative pressure as well as unstable operation. Most papers on this topic rely on experiments to predict valve performance, and theoretically detailed modeling of valves or pipelines is performed, but it is very rare to evaluate hydraulic vibration characteristics by analysing everything from hydraulic pumps to valves comprehensively. In this study, we proposed an experimental circuit that can predict the performance of the prefill valve. The study also analysed the pressure-flow pulsation that is transmitted to the valve through the pipeline, and how the transmitted pressure-flow pulsation affects the valve vibration.

유압 하이브리드 구동 시스템의 축압기 용량 설계 (Capacity Design of Accumulator in Hydraulic Hybrid Drive Brake System)

  • 이재구;김정현;김성동
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.15-21
    • /
    • 2001
  • An accumulator in hydraulic systems stores kinetic energy during braking action, and then that controls hasty surge pressure. An energy recovery system using accumulator seems to be advantageous for ERBS due to its high energy density. This study suggests a method to decide suitable accumulator volume for ERBS. The method is based upon energy conservation between kinetic energy of moving inertia and elastic energy of accumulator. The energy conversion was analyzed and a simple formula was derived. A series of computer simulation was done to verify effectiveness of the formula. The results of the simulation work were compared with those of experiments and these results show that the proposed design is effective for decision accumulator volume in ERBS.

  • PDF

유압 재생 브레이크 시스템의 축압기 용량 설계 (Capacity Design of Accumulator in Hydraulic Regenerative Brake System)

  • 이재구;이재천;김정현;김성동
    • 한국공작기계학회논문집
    • /
    • 제11권1호
    • /
    • pp.104-113
    • /
    • 2002
  • An accumulator in hydraulic systems stores kinetic energy during braking action and then that controls hasty surge pressure. An energy recovery system using accumulator seems to be advantageous far ERBS due to its high energy density. This study suggests a method to decide suitable accumulator volume far ERBS. The method is based upon energy conservation between kinetic energy of moving inertia and elastic energy of accumulator. The energy conversion was analyzed and a simple formula was derived. A series of computer simulation was done to verify effectiveness of the formu1a. The results of the simulation work were compared with those of experiments and these results show that the proposed design is effective far decision of accumulator volume in ERBS.

Contribution of thermal-hydraulic validation tests to the standard design approval of SMART

  • Park, Hyun-Sik;Kwon, Tae-Soon;Moon, Sang-Ki;Cho, Seok;Euh, Dong-Jin;Yi, Sung-Jae
    • Nuclear Engineering and Technology
    • /
    • 제49권7호
    • /
    • pp.1537-1546
    • /
    • 2017
  • Many thermal-hydraulic tests have been conducted at the Korea Atomic Energy Research Institute for verification of the SMART (System-integrated Modular Advanced ReacTor) design, the standard design approval of which was issued by the Korean regulatory body. In this paper, the contributions of these tests to the standard design approval of SMART are discussed. First, an integral effect test facility named VISTA-ITL (Experimental Verification by Integral Simulation of Transients and Accidents-Integral Test Loop) has been utilized to assess the TASS/SMR-S (Transient and Set-point Simulation/Small and Medium) safety analysis code and confirm its conservatism, to support standard design approval, and to construct a database for the SMART design optimization. In addition, many separate effect tests have been performed. The reactor internal flow test has been conducted using the SCOP (SMART COre flow distribution and Pressure drop test) facility to evaluate the reactor internal flow and pressure distributions. An ECC (Emergency Core Coolant) performance test has been carried out using the SWAT (SMART ECC Water Asymmetric Two-phase choking test) facility to evaluate the safety injection performance and to validate the thermal-hydraulic model used in the safety analysis code. The Freon CHF (Critical Heat Flux) test has been performed using the FTHEL (Freon Thermal Hydraulic Experimental Loop) facility to construct a database from the $5{\times}5$ rod bundle Freon CHF tests and to evaluate the DNBR (Departure from Nucleate Boiling Ratio) model in the safety analysis and core design codes. These test results were used for standard design approval of SMART to verify its design bases, design tools, and analysis methodology.

다수의 가동물체형 파력발전기에 있어서의 2차측 제어 정유압변속기 응용 (Application of Secondary Control Hydrostatic Transmission in A Multi-Point Absorbing Wave Energy Converter)

  • 도황팅;안경관
    • 드라이브 ㆍ 컨트롤
    • /
    • 제11권1호
    • /
    • pp.1-7
    • /
    • 2014
  • This paper presents a novel concept of wave energy converter for electric generation from the ocean wave energy. In this paper, a Multi-Point Absorbing Wave Energy Converter, shortened as MPAWEC by using Secondary Control Hydrostatic Transmission (SCHST) was proposed. The power take-off (PTO) system in the proposed MPAWEC includes multi heaving buoys to drive hydraulic pumps placed at different points. The application of SCHST in MPAWEC gives some advantages, such as longevity of hydraulic components; more energy is harvested; the variation of the pressure in the accumulator limited; therefore the accumulator volume is reduced and the output speed is more stable, etc. A PID controller was designed for speed control of the hydraulic motor. The simulation results indicated that the speed of the generator was ensured with the relative error as 0.67%; the efficiency of the proposed system was 71.4%.

A SUMMARY OF 50th OECD/NEA/CSNI INTERNATIONAL STANDARD PROBLEM EXERCISE (ISP-50)

  • Choi, Ki-Yong;Baek, Won-Pil;Kang, Kyoung-Ho;Park, Hyun-Sik;Cho, Seok;Kim, Yeon-Sik
    • Nuclear Engineering and Technology
    • /
    • 제44권6호
    • /
    • pp.561-586
    • /
    • 2012
  • This paper describes a summary of final prediction results by system-scale safety analysis codes during the OECD/NEA/CSNI ISP-50 exercise, targeting a 50% Direct Vessel Injection (DVI) line break integral effect test performed with the Advanced Thermal-Hydraulic Test Loop for Accident Simulation (ATLAS). This ISP-50 exercise has been performed in two consecutive phases: "blind" and "open" phases. Quantitative comparisons were performed using the Fast Fourier Transform Based Method (FFTBM) to compare the overall accuracy of the collected calculations. Great user effects resulting from the combination of the possible reasons were found in the blind phase, confirming that user effect is still one of the major issues in connection with the system thermal-hydraulic code application. Open calculations showed better prediction accuracy than the blind calculations in terms of average amplitude (AA) value. A total of nineteen organizations from eleven countries participated in this ISP-50 program and eight leading thermal-hydraulic system analysis codes were used: APROS, ATHLET, CATHARE, KORSAR, MARS-KS, RELAP5/MOD3.3, TECH-M-97, and TRACE.

Integral effect tests for intermediate and small break loss-of-coolant accidents with passive emergency core cooling system

  • Byoung-Uhn Bae;Seok Cho;Jae Bong Lee;Yu-Sun Park;Jongrok Kim;Kyoung-Ho Kang
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2438-2446
    • /
    • 2023
  • To cool down a nuclear reactor core and prevent the fuel damage without a pump-driven active component during any anticipated accident, the passive emergency core cooling system (PECCS) was designed and adopted in an advanced light water reactor, i-POWER. In this study, for a validation of the cooling capability of PECCS, thermal-hydraulic integral effect tests were performed with the ATLAS facility by simulating intermediate and small break loss-of-coolant accidents (IBLOCA and SBLOCA). The test result showed that PECCS could effectively depressurize the reactor coolant system by supplying the safety injection water from the safety injection tanks (SITs). The result pointed out that the safety injection from IRWST should have been activated earlier to inhibit the excessive core heat-up. The sequence of the PECCS injection and the major thermal hydraulic transient during the SBLOCA transient was similar to the result of the IBLOCA test with the equivalent PECCS condition. The test data can be used to evaluate the capability of thermal hydraulic safety analysis codes in predicting IBLOCA and SBLOCA transients under an operation of passive safety system.

Numerical Analysis Dynamometer (Water Brake) Using Computational Fluid Dynamic Software

  • 최광환
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.103-111
    • /
    • 2008
  • One of the most popular internal combustion engines is the engine in the transportation device. Power is a parameter that shows the capabilities of an object that gives energy, for example the internal combustion engine. Power in this engine is measured by a device called dynamometer. The CFD (Computational Fluid Dynamic) fluent software was simulated several impeller variables to absorb power of engine. With that result, we knew the biggest dynamometer absorber power, cheapest and easy to be made. The hydraulic dynamometer is selected type of dynamometer as the result of design process. The basic principle of a hydraulic dynamometer is the same as centrifugal pump but it has low pump efficiency. The results of the test are maximum power and torque of the tested engine and the operation area of the selected hydraulic dynamometer.

  • PDF

전기 인버터 구동 수압 피스톤 펌프 시스템의 효율 성능에 관한 실험적 연구 (An Experimental Study on the Efficiency of the Water Hydraulic Piston Pump System driven by an Electric Inverter)

  • 함영복;박준형;김성동
    • 유공압시스템학회논문집
    • /
    • 제3권4호
    • /
    • pp.1-7
    • /
    • 2006
  • A water hydraulic pump is likely to have serious problems of high leakage, friction and low energy efficiency. A water hydraulic pump has commonly a fixed displacement type and its outlet flow is adjusted by controlling rotation speed of the pump, which can be implemented by using an electric inverter. This study aims to investigate energy efficiency of the water hydraulic pump system which is driven by an electric inverter. The study is based on the experimental results. The pump which is used in the study shows relatively good efficiency and low leakage, low friction as well. The reasons for the good performance of pump is also investigated.

  • PDF