• Title/Summary/Keyword: Hydraulic Diameter

Search Result 473, Processing Time 0.021 seconds

Ammonium Nitrate Explosion Technique for the Establishment of Orchard (산지과수(山地果樹)의 재식(栽植)을 위(爲)한 폭약이용(爆藥利用)에 관(關)한 연구(硏究))

  • Yoo, S.H.;Koh, K.C.;Park, M.E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.12 no.4
    • /
    • pp.169-178
    • /
    • 1980
  • Ammonium nitrate explosion technique was applied to seek a convenient method for the establishment of orchard on the undulating to rolling land or hill side of Pogog clay loam soil (Fine Aquic Fragiudalfs : Planosols) having high bulk density and low permeability. Explosions were made by three ammonium nitrate explosives placed in the bottom of 90cm deep auger hole with every 2m interval (Explosion I) and 4m interval (Explosion II) respectively. The effect of the explosion on physical properties of the soil was investigated and compared with the effect induced by manual digging, excavation of $1m{\times}1m$ in diameter and depth (Manual digging I) and trenching of $1m{\times}1m{\times}25m$ in width, depth, and length (Manual digging II) respectively. The results investigated after 7 months from the treatments are summarized as follows : 1. The explosion or manual digging reduced bulk density and hardness, whereas the treatments increased porosity, hydraulic conductivity, and available moisture-holding capacity of the soil. 2. The explosion of 4 m interval improved physical properties of the soil to optimum level up to 70cm of the distance from the explosion core in the range of depth 0-60cm, while in the case of depth from 60 to 100cm the optimum level was achieved only within 50cm radius. 3. When exploded in 2 m interval, the effect in the 0-60cm depth was overlapped between two explosion cores. The effect in the depth between 60 and 100cm, however, was found to be independent of the explosion intervals. 4. The manual digging was only costly and laborious but effective only within the work-up zone. 5. For the soils having bulk density higher than $1.4g/cm^3$ after the treatments, the field capacity determined 72 hours after a heavy rain was lower than the laboratory estimate at the suction of 1/3 atm. 6. The top growth of apple tree for the first year revealed that the explosion seemed better treatment than the manual digging, even though the difference was insignificant.

  • PDF

Dynamic Response of Tension Leg Platform (Tension Leg Platform의 동적응답에 관한 연구)

  • Yeo, Woon Kwang;Pyun, Chong Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.21-30
    • /
    • 1985
  • The tension leg platform (TLP) is a kind of compliant structures, and is also a type of moored stable platform with a buoyancy exceeding the weight because of having tensioned vertical anchor cables. In this paper, among the various kinds of tension leg structures, Deep Oil Technology (DOT) TLP was analyzed because it has large-displacement portions of the immersed surface such as vertical corner pontoons and small-diameter elongated members such as cross-bracing. It also has results of hydraulic model tests, comparable with theorectical analysis. Because of the vertical axes of symmetry in the three vertical buoyant legs and because there are no larger horizontal buoyant members between these three vertical members, it was decided to develop a numerical algorithm which would predict the dynamic response of the DOT TLP using the previously developed numerical algorithm Floating Vessel Response Simulation (FVRS) for vertically axisymmetric bodies of revolution. In addition, a linearized hydroelastic Morison equation subroutine would be developed to account for the hydrodynamic pressure forces on the small member cross bracing. Interaction between the large buoyant members or small member cross bracings is considered to be negligible and is not included in the analysis. The dynamic response of the DOT TLP in the surge mode is compared with the results of the TLP algorithm for various combinations of diffraction and Morison forces and moments. The results which include the Morison equation are better than the results for diffraction only. This is because the vertically axisymmetric buoyant members are only marginally large enough to consider diffractions effects. The prototype TLP results are expected to be more inertially dominated.

  • PDF

An Analysis of the Hail Damages to Korean Forests in 2017 by Meteorology, Species and Topography (2017년 우박에 의한 산림피해의 기상, 수종 및 지형 특성 분석)

  • Lim, Jong-Hwan;Kim, Eunsook;Lee, Bora;Kim, Sunhee;Jang, Keunchang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.4
    • /
    • pp.280-292
    • /
    • 2017
  • Hail is not a frequently occurring weather event, and there are even fewer reports of hail damages to forest stands. Since the 2000s, an increase in hail incidence has been documented in Europe and the United States. In Korea, severe hails occurred in Jeollanam-do province on May 31 and in Gyeongsangbuk-do province on June 1, 2017. Hail size was ranged from 0.5 to 5.0 cm in diameter in Jeollanam-do, and from 1.5 to 3.0 cm in Gyeongsangbuk-do. This study was aimed to analyze the hail damages to forests by species and topography based on damage-categorized maps created by using drones and aerial photographs, and to analyze relationships of the damages with meteorological factors. The total damaged forest area was 1,163.1ha in Jeollanam-do, and 2,942.3ha in Gyeongsangbuk-do. Among the 'severe' damaged area 326.7ha, 91% was distributed in Jeollanam-do, and concentrated in the city of Hwasun which covers 57.2% of the total 'severe' damaged area. The most heavily damaged species was Korean red pine(Pinus densiflora S. & Z.) followed by P. rigida. Most broad-leaved trees species including oaks were recovered without any dead trees found. Liliodendron tulipifera was the most severely damaged in terms of the rate of 'severe' degree individuals which are needed to be checked whether they will die or be recovered. Cause of the death of pines was considered as the combination of physical damage caused by the hail and long-lasting drought with high air temperature that occurred before and after the hail event. No pathogens and insects were found which might have affected to tree deaths. We suggested a dieback mechanism of the pine trees damaged by hail and drought.