• Title/Summary/Keyword: Hydraulic Breaker

Search Result 65, Processing Time 0.029 seconds

Numerical Analysis of the Depression Effect of Hybrid Breaker on the Run Up Height due to Tsunami based on the Modified Leading Depression N (LDN) Wave Generation Technique (Leading Depression N (LDN) Wave 조파기법에 기초한 Hybrid Breaker의 지진해일 처오름 저감효과 수치해석)

  • Cho, Yong Jun;Na, Dong Gyu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.1
    • /
    • pp.38-49
    • /
    • 2015
  • Past study of tsunami heavily relied on the numerical modelling using 2D Boussinesq Eq. and Solitary wave. Lately, based on the fact that numerically simulated run up heights based on solitary wave are somewhat smaller than the measured one, Leading Depression N (LDN) Wave has been elaborated, which can account the advancement of a shore line before tsunami strikes a shore. Thereafter it is reported that more accurate simulation can be possible once LDN is deployed. On the other hand, there were numerous reports indicating that stable LDN wave can't be sustained in the hydraulic model test. These conflicts between the hydraulic model tests and numerical results have their roots on the assumption made in the derivation of Boussinesq type wave model such as that wave nonlinearity is equally balanced with wave dispersiveness. Hence, in the numerical simulation based on the Boussinesq type wave model, wave dispersiveness is inevitably underestimated, especially in deep water. Based on this rationale, we developed the modified methodology for the generation of stable LDN wave in the 3D numerical wave flume, and proceeded to numerically analyze the depression effect of Hybrid Breaker on the run up height due to tsunami using the Navier Stoke Equation. The verification of newly proposed wave model in this study was carried out using the run up height from the hydraulic model test. It was shown that Hybrid Breaker consisting of three water chamber and slope at its front can reduce 13% of run up height for H = 5m, and 10% of run up height for H = 6m.

Study on slamming pressure calculation formula of plunging breaking wave on sloping sea dike

  • Yang, Xing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.439-445
    • /
    • 2017
  • Plunging breaker slamming pressures on vertical or sloping sea dikes are one of the most severe and dangerous loads that sea dike structures can suffer. Many studies have investigated the impact forces caused by breaking waves for maritime structures including sea dikes and most predictions of the breaker forces are based on empirical or semi-empirical formulae calibrated from laboratory experiments. However, the wave breaking mechanism is complex and more research efforts are still needed to improve the accuracy in predicting breaker forces. This study proposes a semi-empirical formula, which is based on impulse-momentum relation, to calculate the slamming pressure due to plunging wave breaking on a sloping sea dike. Compared with some measured slamming pressure data in two literature, the calculation results by the new formula show reasonable agreements. Also, by analysing probability distribution function of wave heights, the proposed formula can be converted into a probabilistic expression form for convenience only.

Characteristics Analysis of the Solenoid for High-Voltage Circuit Breaker (고전압 차단기용 솔레노이드의 특성해석)

  • 윤소남;류재섭;함영복;노종호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.382-385
    • /
    • 2003
  • In this paper, the solenoid for high-voltage circuit breaker which is composed of bobbin, solenoid coil, stationary core and plunger was studied. The solenoid is made of a soft magnetic iron bar with a large number of coil windings. when an electric current passes through this, this stationary core becomes the strong magnet used for hydraulic and pneumatic valve of a solenoid operated valve. For the performance evaluation of the solenoid for high-voltage circuit breaker, electromagnetic characteristics and dynamic characteristics were analyzed. And, the parameters which is related to performance improvement were investigated.

  • PDF

Method of Setting Nozzle Intervals at the Finishing Scale Breaker

  • Park, Jong-Wook;Kim, Sung-Cho;Park, Jin-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.870-878
    • /
    • 2003
  • The scale is removed from the strip by high pressure hydraulic descaling at the FSB (Finishing Scale Breaker). Recently, the spray height of nozzle has a trend to be shorter for the purpose of increasing the impact pressure by the high pressure water jet. Here, the nozzle intervals should be decided after considering the impact pressure and the temperature distribution on the strip. In other words, the minimum of impact pressure at the overlap of spray influences the surface grade of the strip due to scale and the overlap distance of the spray affects the temperature variation in the direction of the width of strip. In the present study, the impact pressure of the high pressure water jet is measured by the hydraulic descaling system and calculated with regard to the lead angle of 15$^{\circ}$ and the offset angle of 15$^{\circ}$, and then the temperature distribution and the temperature variation are calculated at the overlap distances of 0 mm, 10 mm, 20 mm, and 30 mm, respectively. The method of setting nozzle intervals is shown by utilizing these results.

An Experimental Study on Compressibility Effect in Sloshing Phenomenon (압축성이 슬로싱 현상에 미치는 영향에 관한 실험적 연구)

  • Park, Jun-Soo;Kim, Hyun-Yi;Lee, Ki-Hyun;Kwon, Sun-Hong;Jeon, Soo-Sung;Jung, Byoung-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.12-18
    • /
    • 2009
  • The present study focused on the compressibility of partially filled fluids in a sloshing tank. Filling ratios ranging from 18% to 26% were used to find compressible impact on a vertical wall. The model test was for 1/25 scale of a 138 K LNGC cargo tank. To investigate the two dimensional phenomenon of sloshing, a longitudinal slice model was tested. A high speed camera was used to capture the flow field, as well as the air pocket deformation. The pressure time history synchronized with the video images revealed the entire compressible process. Three typical impact phenomena were observed: hydraulic jump, flip through, and plunging breaker. In particular, the pressure time history and flow pattern details for flip through and plunging breaker are presented.

A Study on the Predictions of Wave Breaker Index in a Gravel Beach Using Linear Machine Learning Model (선형기계학습모델을 이용한 자갈해빈상에서의 쇄파지표 예측)

  • Eul-Hyuk Ahn;Young-Chan Lee;Do-Sam Kim;Kwang-Ho Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.2
    • /
    • pp.37-49
    • /
    • 2024
  • To date, numerous empirical formulas have been proposed through hydraulic model experiments to predict the wave breaker index, including wave height and depth of wave breaking, due to the inherent complexity of generation mechanisms. Unfortunately, research on the characteristics of wave breaking and the prediction of the wave breaker index for gravel beaches has been limited. This study aims to forecast the wave breaker index for gravel beaches using representative linear-based machine learning techniques known for their high predictive performance in regression or classification problems across various research fields. Initially, the applicability of existing empirical formulas for wave breaker indices to gravel seabeds was assessed. Various linear-based machine learning algorithms were then employed to build prediction models, aiming to overcome the limitations of existing empirical formulas in predicting wave breaker indices for gravel seabeds. Among the developed machine learning models, a new calculation formula for easily computable wave breaker indices based on the model was proposed, demonstrating high predictive performance for wave height and depth of wave breaking on gravel beaches. The study validated the predictive capabilities of the proposed wave breaker indices through hydraulic model experiments and compared them with existing empirical formulas. Despite its simplicity as a polynomial, the newly proposed empirical formula for wave breaking indices in this study exhibited exceptional predictive performance for gravel beaches.