• Title/Summary/Keyword: Hydration water

Search Result 710, Processing Time 0.026 seconds

The Hydration Properties and the Cooking Qualities of Various Brown Rices. (품종별 현미의 수화와 취반에 관한 연구)

  • 박혜우;우경자
    • Korean journal of food and cookery science
    • /
    • v.7 no.2
    • /
    • pp.25-40
    • /
    • 1991
  • Five-brown-rice-variety, Akibare, Odaebyeo, Taebaegbyeo, Nonglim Na 1 and Hankangchalbyeo, was prepared and examinated the hydration kinetics and the cooking qualities. Before the hydration the L/W ratio of raw Taebaegbyeo was the biggest value among the five brown rices. The water uptake was directly proportional to the square root of soaking time. During the hydration water uptake of high yielding brown rices was bigger than those of traditional brown rices among the nonglutenious varieties but waxy brown rices were not. Generally volume increase constant was directly proportional to the water uptake constant, which were different a little with brown rices was hydrated which was inversed proportional to the water uptake degree. According to the instrumental result using the rheometer of cooked brown rice with increased soaking times that was decreased the hardness and was increased the adhesiveness. The sensory evaluation test indicated that the hardness and the stickiness value of cooked brown rices were proper after 15-hour-soaking time and it was identical result to the instrumental result using the rheometer.

  • PDF

Early Strength and Properties of EVA Powder Modified High Strength Concrete (EVA Powder 개질 고강도 콘크리트의 초기강도 및 수밀특성)

  • Kim, Young-Ik;Sung, Chan-Yong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.123-127
    • /
    • 2005
  • EVA Powder modified high strength concretes were prepared by varying polymer/binder mass ratio with a constant water/binder mass ratio of 0.3. The effect of EVA powder on the slump, hydration heat, compressive and flexural strength, toughness and water absorption ratio was studied. In hydration heat test, temperature of hydration reaction displayed almost fixed level regardless of containing rate of EVA powder, but peak time of hydration reaction displayed late inclination as containing rate of powder increases. With the same water/binder mass ratio, the compressive strength and water absorption of EVA powder modified concretes decreased slightly when EVA powder was added and the flexural strength of EVA powder modified concretes rised slightly when EVA powder was added. Also, the toughness of the modified concretes can be improved markedly. The interpenetrating structure between the polymeric phase and cement hydrates formed at a $2{\sim}6%$(containing rate of EVA powder). The properties of the polymer modified concretes were influenced by the polymer film, cement hydrates and the combined structure between the organic and inorganic phases.

  • PDF

A Mushroom-Rice(Ganoderma lucidum) development which uses the brown rice (현미를 이용한 영지버섯쌀 생산)

  • 정인창;곽희진
    • Journal of Applied Tourism Food and Beverage Management and Research
    • /
    • v.14 no.1
    • /
    • pp.47-58
    • /
    • 2003
  • Brown rice was used as material for solid-substrate cultivation of Ganoderma lucidum. The hydration time with cold water appeared to be 10 hours for brown rice, but the final water content was much less than optimum water content(65%). Hot water reduced the hydration time of brown rice, and the water content reached to 65% within 40 mins. From this result, hot water was better than cold water for the hydration of brown rice. We attempted to develop a practically applicable process by combining the soaking and sterilization. The water content of 65% appeared to be the best for the growth of the fungi and production of glucosamine related to the amount of mycelium. The content of free sugar increased far more in brown rice fermented with mycelium than in brown rice which was not fermented. Addition was most suitable 20% when add mushroom-rice to brown rice.

  • PDF

Solid-state NMR Studies of Phenethyl Sulfonic Acid-functionalized MCM-41

  • Chul Kim
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.2
    • /
    • pp.74-81
    • /
    • 2024
  • A sulfonic acid-water-silanol system in SO3H-functionalized MCM-41 was investigated using solid-state nuclear magnetic resonance techniques. The proton exchange rate between a water molecule and a silanol group in the S-PE-MCM-41 was determined by analyzing the 1D proton spectra, the proton EXSY spectrum, and 2H spin-lattice relaxation data under various hydration levels. Two kinds of water-bounding sites were found in the S-PE-MCM-41: weakly and strongly bound sites. Over several hours, water molecules bound to the weakly bound sites at the low hydration level migrated to the strongly bound sites. At high temperature, the S-PE-MCM-41 easily lost water molecules weakly bound to the silanol, while the strongly bound water molecules survived. Water molecules that participated in the hydration of the phenethyl sulfonate were involved in the hydrogenbonded silanol mechanism of proton conductivity. This phenomenon contributes higher proton conductivity to the S-PE-MCM-41 by the cooperation of sulfonyl and silanol groups in the proton transfer process, even at higher temperature.

Theoretical Study of Hydration of Zeolite NaA (제올라이트 NaA의 수화에 관한 이론적 연구)

  • Kyoung Tai No;Mu Shik Jhon
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.374-384
    • /
    • 1979
  • Hydration scheme and hydration energy are determined in ${\alpha}$ cage of zeolite NaA. The selectivity between Na(1) and Na(2) is determined from energy calculation. The waters in ${\alpha}$ cage form a distorted dodecahedral cage. The average binding energies of water(1), water(2) and water(3) are -29.847, -25.344 and -15.888 kcal/mole respectively. The positions of oxygens of hydrated waters are in good agreement with the X-ray data. The heat of immersion curve is also obtained. This result is in good agreement with the differential heat of sorption curve obtained from differential thermal analysis. It is concluded that theoretical method provides considerable uses in the determination and understanding of the hydration and interaction energy of zeolites sorbate binding.

  • PDF

The impact of altered chemical composition on cement hydration reactivity (변화된 화학조성이 시멘트 수화반응성에 미치는 영향)

  • Choi, Ji-Ung;Son, Joeng-Jin;Kim, Ji-Hyun;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.191-192
    • /
    • 2023
  • This study, evaluated the effect of changes in the chemical composition of cement on the hydration reaction for carbon neutrality. For this purpose, changes in the chemical bound water and heat of hydration between current cement and past cement were compared. As a result, it was found that both the chemically bound water and heat of hydration of currently used cement decreased.

  • PDF

Free Energy of Ion Hydration

  • Kim, Hag-Sung;Chung, Jong-Jae
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.220-225
    • /
    • 1993
  • The influence of temperature and pressure on the free energy of the ion hydration has been considered. The ion radii measured by conductometric method and the saturated dielectric constant cited from other works were used to calculate the free energy in the hydration shell. The Born equation was modified in order to fit in our model. In our model, the environment of ion consists of three regions. The innermost one is the hydration shell in which water is immobilized and electrostricted, the middle one is the one which contains less ordered waters than the bulk medium, and the outermost one is the bulk water which is under the influence of the electric field of ion. Our results for the free energy of ion hydration were compared with those of other attempts. Especially, ${\Delta}$G$_{hyd}$ of $Li^+$ ion is considerably too negative in this study at given temperature, comparing with those of other attempts. But ${\Delta}$G$_{hyd}$ of other ions coincides with each other.

A Study on the Hydration Ratio and Autogenous Shrinkage of Low Water/cement Ratio Paste (저물시멘트비 페이스트의 시멘트수화율 및 자기수축에 관한 연구)

  • Hyeon, Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.385-390
    • /
    • 2002
  • Autogenous shrinkage of concrete has been defined as decrease in volume due to hydration cement, not due to other causes such as evaporation, temperature change and external load and so on. For ordinary concretes, autogenous shrinkage is so little compared to the other deformations that it has been dignored. It has recently been proved, however, that autogenous shrinkage considerably increase with decrease in water to cement ratio. And it has been reported that cracking can be caused by autogenous shrinkage, when high- strength concretes were used. In this study, we propose an analytical system to represent autogenous shrinkage in cement paste in order to control crack due to autogenous shrinkage. The system is composed with the hydration model and pore structure model. Contrary to the usual assumption of uniform properties in the hydration progress, the hydration model to refine Tomosawa's represents the situation that inner and outer products are made in cement paste. The pore structure model is based upon the physical phenomenon of ion diffusion in cement paste and chemical phenomenon of hydration in cement particle. The proposed model can predict the pore volume ratio and the pore structure in cement paste under variable environmental conditions satisfactorily The autogenous shrinkage prdiction system with regard to pore structure development and hydration at early ages for different mix-proportions shows a reasonable agreement with the experimental data.

  • PDF

A novel Fabry-Perot fiber optic temperature sensor for early age hydration heat study in Portland cement concrete

  • Zou, Xiaotian;Chao, Alice;Wu, Nan;Tian, Ye;Yu, Tzu-Yang;Wang, Xingwei
    • Smart Structures and Systems
    • /
    • v.12 no.1
    • /
    • pp.41-54
    • /
    • 2013
  • Concrete is known as a heterogeneous product which is composed of complex chemical composition and reaction. The development of concrete thermal effect during early age is critical on its future structural health and long term durability. When cement is mixed with water, the exothermic chemical reaction generates hydration heat, which raises the temperature within the concrete. Consequently, cracking may occur if the concrete temperature rises too high or if there is a large temperature difference between the interior and the exterior of concrete structures during early age hydration. This paper describes the contribution of novel Fabry-Perot (FP) fiber optic temperature sensors to investigate the thermal effects of concrete hydration process. Concrete specimens were manufactured under various water-to-cement (w/c) ratios from 0.40 to 0.60. During the first 24 hours of concreting, two FP fiber optic temperature sensors were inserted into concrete specimens with the protection of copper tubing to monitor the surface and core temperature change. The experimental results revealed effects of w/c ratios on surface and core temperature developments during early age hydration, as well as demonstrating that FP fiber optic sensors are capable of capturing temperature variation in the concrete with reliable performance. Temperature profiles are used for calculating the apparent activation energy ($E_a$) and the heat of hydration (H(t)) of concrete, which can help us to better understand cement hydration.

DFT Study of Water-Assisted Intramolecular Proton Transfer in the Tautomers of Thymine Radical Cation

  • Kim, Nam-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.7
    • /
    • pp.1009-1014
    • /
    • 2006
  • Density functional theory calculations are applied to investigate the intramolecular proton transfer in the tautomers of thymine radical cation and its hydrated complexes with one water molecule. The optimized structures and energies for 6 tautomers and 6 transition states of thymine radical cation are calculated at the B3LYP/6-311++G(d,p) level. It is predicted that the order of relative stability for the keto and enol tautomers of thymine radical cation is the same with that of the neutral thymine tautomers, though the enol tautomers are more stabilized with respect to the di-keto form in the radical cation than in the neutral state. A new channel of proton transfer from >C5-$CH_{3}$ of thymine is found to open and have the lowest energy barrier of other proton transfer processes in thymine radical cation. The roles of hydration are also investigated with thymine-water 1 : 1 complex ions. The presence of water significantly lowers the barrier of the proton transfer, which clearly shows the assisting role of hydration even with one water molecule