• 제목/요약/키워드: Hydration behavior

검색결과 146건 처리시간 0.036초

MgO입자 표면에 도핑된 P2O5가 가수분해, 발수성, 그리고 절연거동에 미치는 영향 (Effects of P2O5-doped on the Surface of MgO Particles for Hydrolysis, Water Repellency, and Insulation Behavior)

  • 최진삼
    • 공업화학
    • /
    • 제33권6호
    • /
    • pp.588-593
    • /
    • 2022
  • MgO 입자 표면에 첨가된 P2O5의 가수분해, 발수성, 그리고 절연 거동에 미치는 영향을 조사하였다. MgO 표면에 첨가된 P2O5는 가수분해반응 억제와 발수성을 동시에 나타내기 때문에 독특한 절연거동을 나타내었다. 따라서 절연거동은 MgO의 표면수화반응에 의한 Mg(OH)2와 OH-전하 전달비와 친수성에 반비례하였다. 시효에 따른 MgO의 절연성은 표면수화반응, 첨가된 도펀트 종의 밴드갭, 그리고 도펀트의 친수성과 소수성에 강한 영향성과 의존성을 나타내었다. 마지막으로 친수성인 MgO의 표면수화반응을 억제하는 전기절연성을 발현하여 열전달매체 응용분야에서 큰 잠재력을 제공하는 것으로 나타났다.

리트벨트법에 의한 혼합재 첨가 보통 포틀랜드 시멘트 중 C3A 수화반응 해석 (Hydraulic Reaction Analysis of C3A in Ordinary Portland Cement with Mineral Additions by Rietveld Method)

  • 임영진;이승헌;조재우
    • 한국세라믹학회지
    • /
    • 제51권2호
    • /
    • pp.82-87
    • /
    • 2014
  • Due to the revised Korean standard KS L 5201 for Ordinary Portland Cement (OPC), the use of mixed cement has grown from 5% to 10%. This study investigates the hydration behavior of $C_3A$, asit is a cement mixture that is more commonly used than granulated blast furnace slag or limestone alone. Paste samples were prepared with either granulated blast furnace slag or limestone alone. Each sample was compared with the widely used Rietveld method with a cement mixture containing blast furnace slag or limestone. The hydration behavior of $C_3A$ in each OPC sample was assessed and results were analyzed. Granulated blast furnace slag promotes a high initial level of ettringite, but as the days passed, it promotes an increase in monosulfate, leading to cracks and expansion due to the penetration of sulfates in the solution. However, when limestone is added to the mixture, a transformation of ettringite to monosulfate occurs in the presence of the $CaCO_3$ in the limestone. It is considered that this produces hemi-carbonate and mono-carbonate and thus maintains the ettringite level.

수화 반응에 따른 MgO-모래 혼합물의 팽창 특성 및 전단 거동 변화 (Effect of Hydration on Swelling Properties and Shear Strength Behavior of MgO-sand Mixture)

  • 이지환;윤보영;추현욱;이우진;이창호
    • 한국지반공학회논문집
    • /
    • 제36권11호
    • /
    • pp.97-106
    • /
    • 2020
  • 본 연구에서는 산화 마그네슘(MgO) 무게비에 따른 WMgO/WTotal=0, 30, 50, 70, 100%) MgO-모래 혼합물의 팽창특성과 수화 반응 전·후 전단거동을 비교하였다. 시료는 MgO 함량이 높은 내화벽돌을 파쇄하여 모래와 혼합하여 조성하였다. MgO는 수화반응 후 Mg(OH)2로 분화되어 비중 및 입자 크기가 감소하였다. 미세구조 관찰과 X선 회절분석을 통해 MgO는 정육면체 구조인 Periclase에서 수화반응 후에 육각형 결정 구조인 Brucite로 변화하는 것을 확인하였다. MgO 함량이 증가함에 따라 팽창압과 팽창량은 증가하는 것으로 나타났다. 생성된 Mg(OH)2가 모래 입자 사이의 공극을 주로 채우게되는 MgO 함량 30% 시료는 팽창압과 팽창량이 상대적으로 매우 낮게 측정되었고, MgO 50% 이상의 시료에서는 Mg(OH)2가 모래 입자 사이의 공극을 채우고 난 후 모래 입자 또는 다른 Mg(OH)2를 밀어내기 때문에 팽창압과 팽창량이 급격히 증가하는 양상을 보였다. 직접전단시험 결과 수화반응 전 혼합물은 높은 MgO 함량에서는 부피 팽창거동을 보였고 낮은 MgO 함량에서는 부피 수축거동을 보였다. 그러나 수화반응 후 혼합물은 모두 부피 수축거동을 보였다. 수화반응 후 정규화된 전단강도의 한계 세립질 함량 (Fth)은 약 60% Mg(OH)2 비율로 나타났다.

수화열에 의한 매스콘크리트 박스 라멘 구조물의 구조거동 연구 (A Study on the Structural Behavior in Mass Concrete Box Rahmen due to Hydration Heat)

  • 조병완;김영진;허민희
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.349-352
    • /
    • 1999
  • Concrete cracks due to hydration heat are a serious problem, particularly in mass concrete structures such as box rahmen, dam or footing of pier, etc.. As a result of the temperature rise and restriction condition of foundation, the thermal stress which may induce the cracks can occur. In this, study, ABAQUS program package was used to calculate the temperature distributions generated by hydration heat and the thermal stress in box rahmen structure which have thickness of 1.7~2.2m, and applied for various equations of adiabatic temperature rise such as korean code, japanese code, convection coefficient and low heat cement code.

  • PDF

폴리카복실레이트계 고성능 유동화제의 합성과 시멘트계 내의 유동 및 수화 반응 거동 (Synthesis of High-Performance Polycarboxylate(PC)-Type Superplasticizer, and Its Fluidity and Hydration Behavior in Cement Based-System)

  • 신진용;채은진;홍지숙;서정권;황의환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.77-80
    • /
    • 2006
  • Graft copolymerized polycarboxylate(PC)-type superplasticizers(PCs) which have carboxylic acid with $\pi$ bond among the molecular structure and polyethyleneglycol methyl ether methacrylate(PMEM) were synthesized by free radical reaction and investigated the chemical structure, polymerization condition, and physical and chemical properties. Also, the effects of PCs in the dispersion, adsorption and hydration of cement were evaluated. As the molecular weight of graft chain decreases, the adsorption amount on cement particles increased. It was advantageous for the flow to reduce molar ratio, the lower the side bone molecular weight, and increase the molar ratio, the larger the side bone molecular weight. The hydration reaction speed was highly delayed at day 1, due to increase in molar ratio and reduction in side bone molecular weight, but it was recovered in the days after.

  • PDF

공극수 추출방법에 따른 시멘트 페이스트의 수화도와 공극 특성 분석 (Evaluation of different methods to remove pore water in an early age cement paste for the degree of hydration measurement and pore structure analysis.)

  • 안유리;로양;김백중;이종구;강경인
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 춘계 학술논문 발표대회
    • /
    • pp.245-246
    • /
    • 2012
  • The analysis of microstructure is essential to understand the material behavior such as shrinkage, strength, and permeability. In this study, three different easy-to-apply specimen preparation methods for the mercury intrusion analysis were chosen, and their effectiveness in removing pore water and thus impeding further hydration was evaluated. As a result, it was found that the direct freeze-drying was the most effective among the three methods.

  • PDF

초기재령 콘크리트의 응결특성 모델링 (Modeling of the Setting Characteristics of Early-age Concrete)

  • 조호진;송하원;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.391-396
    • /
    • 2002
  • The so called setting is defined as the onset of rigidity in fresh concrete. In the analysis of the early-age concrete behavior, we consider fresh concrete as a structural element immediately after mixing. But for the activation of real structural behavior of fresh concrete, it takes some time after the beginning of hydration reaction. So, the very early age deformations due to hydration heat and shrinkage which occur before the setting do not produce restraint stresses. In this paper, we propose a setting characteristic model based on the so called percolation theory. From the analysis using the model, the influence of curing temperature is investigated and analytical results are compared with experimental results. From the comparison, the validity of proposed model is verified. This model is also applied to evaluate stress development in a temperature-stress test machine (TSTM) specimen and then the effect of setting time on the stress development is discussed.

  • PDF

불소-실리카 복합형 균열저감제(FS)가 첨가된 콘크리트의 초기거동 및 역학적 특성 (Initial Behaviors and Dynamic Properties of Concrete added with Fluorine-Silicate Hybrid Type Crack Controlling Agent)

  • 이만익;박종화;남재현;김도수;길배수;김재온
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.683-686
    • /
    • 2005
  • This paper is related to investigate adding effect of fluorine-silicate hybrid type crack controlling agent(FS) on initial behavior, dynamic properties, adibatic hydration temp, and plastic crack behavior of concrete(Specification : 25-30-18). It is appeared that adding of FS contributed to strength elevation, lowering of hydration temperature as well as plastic crack reduction without disturbance of initial behaviors of concrete such as slump, air content and setting.

  • PDF

Hydrophobicity of Amino Acids in Protein Context

  • Cho, Hanul;Chong, Song-Ho;Ham, Sihyun
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제3회(2014년)
    • /
    • pp.103-113
    • /
    • 2014
  • Hydrophobicity is the key concept to understand the role of water in protein folding, protein self-assembly, and protein-ligand interaction. Conventionally, hydrophobicity of amino acids in a protein has been argued based on hydrophobicity scales determined for individual free amino acids, assuming that those scales are unaltered when amino acids are embedded in a protein. Here, we investigate how the hydrophobicity of constituent amino acids depends on the protein context, in particular, on the total charge and secondary structures of a protein. To this end, we compute and analyze the hydration free energy - free energy change upon hydration quantifying the hydrophobicity - of three short proteins based on the integral-equation theory of liquids. We find that the hydration free energy of charged amino acids is significantly affected by the protein total charge and exhibits contrasting behavior depending on the protein net charge being positive or negative. We also observe that amino acids in the central ${\beta}$-strand sandwiched by ${\beta}$-sheets display more enhanced hydrophobicity than free amino acids, whereas those in the ${\alpha}$-helix do not clearly show such a tendency. Our results provide novel insights into the hydrophobicity of amino acids, and will be valuable for rationalizing and predicting the strength of water-mediated interaction involved in the biological activity of proteins.

  • PDF

물이 토목섬유 사이의 접촉 전단강도에 미치는 영향 (The Effect of Water on the Interface Shear Strength between Geosynthetics)

  • 서민우;박준범;박인준
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.321-328
    • /
    • 2002
  • Various geosynthetics used as liners or the Protection layers are installed in the solid waste landfill. The interface shear strength between geosynthetics installed at the slope of the landfill is a very important variable for the safe design of bottom and cover systems in the solid waste landfill. The interface shear strengths between (1) Geomembrane(GM)/Geotexile(GT) and (2) Geomembrane(GM)/Geosynthetic Clay Liner(GCL) were estimated by a large direct shear test in this study and were evaluated by the Mohr-Coulomb failure criterion. Especially, this research is focused on the effect of water which exists between geosynthetics because interfaces become easily wet or hydrated by rain, leachate and groundwater beneath liners. The strength reduction at large displacement and the effects of the magnitude of normal stresses and GCL hydration methods also investigated. The test results showed that the interface shear strength and shear behavior varied depending upon the magnitude of normal stresses, water at the interface, and hydration methods. Summary of secant friction angles, which could be used as reference values at a site where similar geosynthetics are installed, together with normal stress and hydration condition are presented.

  • PDF