• Title/Summary/Keyword: Hydration activity

Search Result 115, Processing Time 0.024 seconds

Oxidation of Ethanol in the Gas Phase with Alcohol Oxidase and Alcohol Dehydrogenase (Alcohol Oxidase와 Alcohol Dehydrogenase를 이용한 기상에서의 Ethanol의 산화반응)

  • 박현규;장호남김동옥
    • KSBB Journal
    • /
    • v.9 no.3
    • /
    • pp.239-245
    • /
    • 1994
  • The effects of reaction temperature and the level of hydration(water activity) were studied for gas phase reactions of alcohol oxidase and alcohol dehydrogenase immobilized on DEAE-cellulose and controlled pore glass(CPG). Optimum reaction temperature zone of gas phase reaction was similar to that of aqueous phase reaction. The activity of alcohol oxidase increased dramatically and the stability decreased when the water activity was increased from 0.3 to 0.8. The apparent activation energies of the gas phase reaction decreased approaching the values obtained in the aqueous phase reaction as the water activity increased. In the both cases of alcohol oxidase and alcohol dehydrogenase, the rate constants of the gas phase reaction were lower than those of aqueous phase reaction by two orders of magnitude and these results could be correlated to the vapor-liquid equilibrium data of the substrate, ethanol.

  • PDF

Effects of Phenylpropanoid Compounds on Melanin Production in B16 Melanoma Cells (B16 Melanoma 세포에서 Phenylprlopanoid 화합물이 Melanin 생성에 미치는 영향)

  • 박영미;윤미연;김경원;조남영;임혜원;이지윤;이진희;김연정;김창종
    • YAKHAK HOEJI
    • /
    • v.47 no.6
    • /
    • pp.398-403
    • /
    • 2003
  • To investigate the relationship between structure and biological activity of phenylpropanoids, we measured effects of phenylpropanoids on anti-oxidant and whitening activity, In DPPH radical scavenging activity, caffeic acid analogues showed the significant anti-oxidant activity. Although phenylpropanoids did not inhibit purified-tyrosinase activity, they significantly inhibited tyrosinase activity and melanin production in MSH-stimulated B16 melanoma cells. However, phenylpropanoids did not affect tyrosinase expression in MSH-stimulated B16 melanoma cells, which suggest that inhibition of MSH-induced melanin production was due to tyrosinase inhibition mediated via other signal pathways but not expression of tyrosinase. Phenylpropanoids also significantly inhibited both hyaluronidase and elastase activity, suggesting that phenylpropanoids may be used as whitening, hydration and anti-wrinkling agents. Hydroxyl residue of aromatic ring in phenylpropanoids plays an important role in anti-oxidant and whitening activity.

Overproduction of the Escherichia coli Chaperones GroEL-GroES in Rhodococcus ruber Improves the Activity and Stability of Cell Catalysts Harboring a Nitrile Hydratase

  • Tian, Yuxuan;Yu, Chen, Huimin;Shen, Zhongyao
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.337-346
    • /
    • 2016
  • Three combinations of molecular chaperones from Escherichia coli (i.e., DnaK-DnaJ-GrpE-GroEL-GroES, GroEL-GroES, and DnaK-DnaJ-GrpE) were overproduced in E. coli BL21, and their in vitro stabilizing effects on a nitrile hydratase (NHase) were assessed. The optimal gene combination, E. coli groEL-groES (ecgroEL-ES), was introduced into Rhodococcus ruber TH3. A novel engineered strain, R. ruber TH3G was constructed with the native NHase gene on its chromosome and the heterologous ecgroEL-ES genes in a shuttle plasmid. In R. ruber TH3G, NHase activity was enhanced 37.3% compared with the control, TH3. The in vivo stabilizing effect of ecGroEL-ES on the NHase was assessed using both acrylamide immersion and heat shock experiments. The inactivation behavior of the in vivo NHase after immersion in a solution of dynamically increased concentrations of acrylamide was particularly evident. When the acrylamide concentration was increased to 500 g/l (50%), the remaining NHase activity in TH3G was 38%, but in TH3, activity was reduced to 10%. Reactivation of the in vivo NHases after varying degrees of inactivation was further assessed. The activity of the reactivated NHase was more than 2-fold greater in TH3G than in TH3. The hydration synthesis of acrylamide catalyzed by the in vivo NHase was performed with continuous acrylonitrile feeding. The final concentration of acrylamide was 640 g/l when catalyzed by TH3G, compared with 490 g/l acrylamide by TH3. This study is the first to show that the chaperones ecGroEL-ES work well in Rhodococcus and simultaneously possess protein-folding assistance functions and the ability to stabilize and reactivate the native NHases.

Protein Context-Dependent Hydrophobicity of Amino Acids in Protein

  • Cho, Hanul;Ham, Sihyun
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.163-166
    • /
    • 2016
  • Hydrophobicity is the key concept to understand the water plays in protein folding, protein aggregation, and protein-protein interaction. Traditionally, the hydrophobicity of protein is defined based on the scales of the hydrophobicity of residue, assuming that the hydrophobicity of free amino acids is maintained. Here, we explore how the hydrophobicity of constituting amino acids in protein rely on the protein context, in particular, on the total charge and secondary structures of a protein. To this end, we calculate and investigate the hydration free energy of three short proteins based on the integral-equation theory of liquids. We find that the hydration free energy of charged amino acids is significantly affected by the protein total charge and exhibits contrasting behavior depending on the protein total charge being positive or negative. We also observe that amino acids in the ${\beta}-sheets$ display more enhanced the hydrophobicity than amino acids in the loop, whereas those in the ${\alpha}-helix$ do not clearly show such a tendency. And the salt-bridge forming amino acids also exhibit increase of the hydrophobicity than that with no salt bridge. Our results provide novel insights into the hydrophobicity of amino acids, and will be valuable for rationalizing and predicting the strength of water-mediated interaction involved in the biological activity of proteins.

  • PDF

Should Workers Avoid Consumption of Chilled Fluids in a Hot and Humid Climate?

  • Brearley, Matt B.
    • Safety and Health at Work
    • /
    • v.8 no.4
    • /
    • pp.327-328
    • /
    • 2017
  • Despite provision of drinking water as the most common method of occupational heat stress prevention, there remains confusion in hydration messaging to workers. During work site interactions in a hot and humid climate, workers commonly report being informed to consume tepid fluids to accelerate rehydration. When questioned on the evidence supporting such advice, workers typically cite that fluid absorption is delayed by ingestion of chilled beverages. Presumably, delayed absorption would be a product of fluid delivery from the gut to the intestines, otherwise known as gastric emptying. Regulation of gastric emptying is multifactorial, with gastric volume and beverage energy density the primary factors. If gastric emptying is temperature dependent, the impact of cooling is modest in both magnitude and duration (${\leq}5$ minutes) due to the warming of fluids upon ingestion, particularly where workers have elevated core temperature. Given that chilled beverages are most preferred by workers, and result in greater consumption than warm fluids during and following physical activity, the resultant increased consumption of chilled fluids would promote gastric emptying through superior gastric volume. Hence, advising workers to avoid cool/cold fluids during rehydration appears to be a misinterpretation of the research. More appropriate messaging to workers would include the thermal benefits of cool/cold fluid consumption in hot and humid conditions, thereby promoting autonomy to trial chilled beverages and determine personal preference. In doing so, temperature-based palatability would be maximized and increase the likelihood of workers maintaining or restoring hydration status during and after their work shift.

Structure and Activity of Quinolone Antibacterial Agents. 1. 7-Substituted 1-Ethyl-6-fluoro-1,4-dihydro-4-oxoquinoline-3-carboxylic Acids

  • Shin, Youn-Ho;Ryu, Eung K.;Kang, Young-Kee
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.5
    • /
    • pp.376-379
    • /
    • 1990
  • To find out a correlation between antibacterial activity and physical properties of 7-substituted 1-ethyl-6-fluoro-1,4-dihydro-4-oxoquinoline-3-carboxylic acid, dipole moments, charge distributions, and hydrophobicities were calculated. The atomic charges and the dipole moments to not give any correlations with inhibition of DNA gyrase, but the calculated hydration free energies show some correlations.

Enhancement of skin barrier and hydration-related molecules by protopanaxatriol in human keratinocytes

  • Lee, Jeong-Oog;Hwang, So-Hyeon;Shen, Ting;Kim, Ji Hye;You, Long;Hu, Weicheng;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.354-360
    • /
    • 2021
  • Background: Protopanaxatriol (PPT) is a secondary intestinal metabolite of ginsenoside in ginseng. Although the effects of PPT have been reported in various diseases including cancer, diabetes and inflammatory diseases, the skin protective effects of PPT are poorly understood. Methods: HaCaT cells were treated with PPT in a dose-dependent manner. mRNA and protein levels which related to skin barrier and hydration were detected compared with retinol. Luciferase assay was performed to explore the relative signaling pathway. Western blot was conducted to confirm these pathways and excavated further signals. Results: PPT enhanced the expression of filaggrin (FLG), transglutaminase (TGM)-1, claudin, occludin and hyaluronic acid synthase (HAS) -1, -2 and -3. The mRNA expression levels of FLG, TGM-1, HAS-1 and HAS-2 were suppressed under NF-κB inhibition. PPT significantly augmented NF-κB-luc activity and upregulated Src/AKT/NF-κB signaling. In addition, PPT also increased phosphorylation of the mitogen-activated protein kinases (MAPKs) ERK, JNK and p38 and upstream MAPK activators (MEK and MKK). Furthermore, transcriptional activity of AP-1 and CREB, which are downstream signaling targets of MAPK, was enhanced by PPT. Conclusion: PPT improves skin barrier function and hydration through Src/AKT/NF-κB and MAPK signaling. Therefore, PPT may be a valuable component for cosmetics or treating skin disorders.

Carbon Dioxide Sequestration of Enzyme Covalently Immobilized on Porous Membrane (공유결합으로 다공성 막에 고정화된 효소에 의한 이산화탄소 포집)

  • Park, Jin-Won
    • KSBB Journal
    • /
    • v.28 no.4
    • /
    • pp.225-229
    • /
    • 2013
  • Bovine Carbonic anhydrase (BCA) was immobilized on a submicro-porous membrane through covalent immobilization. The immobilization was conducted on the porous membrane surface with the treatment of polyethyleneimine, glutaraldehyde, and the anhydrase, in sequence. The immobilization was confirmed using X-ray photon spectrometer. The pH values of carbon-dioxide saturated solution with buffer were monitored with respect to time to calculate the catalytic activities of hydration of carbon-dioxide for free and immobilized CA. The catalytic rate constant values for free CA, immobilized CA on polystyrene nanoparticles, and immobilized CA on a porous cellulose acetate membrane were 0.79, 0.67, and 0.56 $s^{-1}$, respectively. Reusability was studied up to 10 cycles of $CO_2$ sequestration. The activity for the CA immobilized on the membrane was kept to 95% after 10 cycles, and comparable to the CA on the nanoparticles. The stabilities for heat and storage were also investigated for the three cases. The results suggested that the CA immobilized the membrane had the least loss rate of the activity compared to the others. From this study, the porous membrane was feasible as a carrier for the CA immobilization in hydration and sequestration of carbon-dioxide.

Properties of Alkali Activated MSWI (Municipal Solid Waste Incinerator) Ash Mortar (알칼리 활성화된 도시 폐기물 소각재 모르타르의 특성)

  • Jo Byung Wan;Koo Ja Kap;Park Seung Kook;Ko Hee Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.773-776
    • /
    • 2005
  • MSWI ash is the residue from waste combustion processes at temperature between $850^{\circ}C\;and\;1000^{\circ}C$. And the main components of MSWI ash are $SiO_2,\;CaO\;and\;Al_2O_3$. The aim of this study is to find a way to useful application of MSWI ash(after treatment) as a structural material and to investigates the hydraulic activity, compressive strength development, composition variation of such chemicallyi-activated MSWI ashes concrete. And it was found that early cement hydration, followed by the breakdown and dissolving of the MSWI-ashes, enhanced the formation of calcium silicate hydrates(C-S-H), The XRD and SEM-EDS results indicate that, both the hydration degree and strength development are closely connected with a curing condition and a chemically-activator. Compressive strengths with values in the 40.5MFa were obtained after curing the activated MSWI ashes with NaOH+water glass at $90^{\circ}C$.

  • PDF

Hydration of Active-Belite Cement with Gypsum and Slag (석고와 슬래그를 첨가한 Active-Belite Cement의 수화특성)

  • 이성호;박동철;김남호;최상홀
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.4
    • /
    • pp.339-346
    • /
    • 1998
  • Active belite cement clinkers were synthsized by using natural raw materials with borax and calcium phosphate ({{{{ {Ca }_{3 }( {PO}_{4}) }}2) In both case {{{{alpha ^、 {C }_{2 }S }} were formed but borax was more efficient. The cement syn-thesized with the addition of borax was hydrated with the addition of anhydrite(5 wt%) and slag(30wt%, 40wt% 50wt%) The addition of 50wt% slag with anhydrite was good for strength development in 7days and the compressive strength was developed to twice than no addition of slag at 28 days strength.

  • PDF