• Title/Summary/Keyword: Hybrid-GA Algorithm

Search Result 168, Processing Time 0.031 seconds

A Hybridization of Adaptive Genetic Algorithm and Particle Swarm Optimization for Numerical Optimization Functions

  • Yun, Young-Su;Gen, Mitsuo
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2008.10b
    • /
    • pp.463-467
    • /
    • 2008
  • Heuristic optimization using hybrid algorithms have provided a robust and efficient approach for solving many optimization problems. In this paper, a new hybrid algorithm using adaptive genetic algorithm (aGA) and particle swarm optimization (PSO) is proposed. The proposed hybrid algorithm is applied to solve numerical optimization functions. The results are compared with those of GA and other conventional PSOs. Finally, the proposed hybrid algorithm outperforms others.

  • PDF

Reusable Network Model using a Modified Hybrid Genetic Algorithm in an Optimal Inventory Management Environment (최적 재고관리환경에서 개량형 하이브리드 유전알고리즘을 이용한 재사용 네트워크 모델)

  • Lee, JeongEun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.5
    • /
    • pp.53-64
    • /
    • 2019
  • The term 're-use' here signifies the re-use of end-of-life products without changing their form after they have been thoroughly inspected and cleaned. In the re-use network model, the distributor determines the product order quantity on the network through which new products are received from the suppliers or products are supplied to the customers through re-use of the recovered products. In this paper, we propose a reusable network model for reusable products that considers the total logistics cost from the forward logistics to the reverse logistics. We also propose a reusable network model that considers the processing and disposal costs for reuse in an optimal inventory management environment. The authors employe Genetic Algorithm (GA), which is one of the optimization techniques, to verify the validity of the proposed model. And in order to investigate the effect of the parameters on the solution, the priority-based GA (priGA) under three different parameters and the modified Hybrid GA (mhGA), in which parameters are adjusted for each generation, were applied to four examples with varying sizes in the simulation.

A study on optimal of block facility layout using Hybrid GA (Hybrid GA를 이용한 최적의 블록단위 설비배치에 관한 연구)

  • 이용욱;석상문;이철영
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.131-142
    • /
    • 2000
  • Facility layout is the early stage of system design that requires a mid-term or long-term plan. Since improper facility layout might incur substantial logistics cost including material handling and re-installment costs, due consideration must be given to decisions on facility layout. Facility layout is concerned with low to arrange equipment necessary for production in a given space. Its objective is to minimize the sum of all the products of each equipment's amount of flow multiplied by distance. Facility layout also is related to the issue of NP-complete, i.e., calculated amounts exponentially increase with the increase of the number of equipment. This study discusses Hybrid GA developed, as an algorithm for facility layout, to solve the above-mentioned problems. The algorithm, which is designed to efficiently place equipment, automatically produces a horizontal passageway by the block, if a designer provides the width and length of the space to be handled. In addition, this study demonstrates the validity of the Algorithm by comparing with existing algorithms that have been developed. We present a Hybrid GA approach to the facility layout problem that improves on existing work in terms of solution quality and method. Experimental results show that the proposed algorithm is able to produce better solution quality and more practical layouts than the ones obtained by applying existing algorithms.

  • PDF

Intelligent Control of Induction Motor Using Hybrid System GA-PSO

  • Kim, Dong-Hwa;Park, Jin-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1086-1091
    • /
    • 2005
  • This paper focuses on intelligent control of induction motor by hybrid system consisting of GA-PSO. Induction motor has been using in industrial area. However, it is challengeable on how we control effectively. From this point, an optimal solution using GA (Genetic Algorithm) and PSO (Particle Swarm Optimization) is introduced to intelligent control. In this case, it is possible to obtain local solution because chromosomes or individuals which have only a close affinity can convergent. To improve an optimal learning solution of control, This paper deal with applying PSO and Euclidian data distance to mutation procedure on GA's differentiation. Through this approaches, we can have global and local optimal solution together, and the faster and the exact optimal solution without any local solution. Four test functions are used for proof of this suggested algorithm.

  • PDF

Attitude Control of Helicopter Simulator System using A Hybrid GA-PID WAVENET Controller (Hybrid GA-PID WAVENET 제어기를 이용한 모형 헬리콥터 시스템의 자세 제어)

  • 박두환;지석준;이준탁
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.6
    • /
    • pp.433-439
    • /
    • 2004
  • The Helicopter Simulator System is non-linear and complex. Futhermore, because of absence of its accurate mathematical model, it is difficult to control accurately its attitudes such as elevation angle and azimuth one. Therefore, we proposed a Hybrid GA-PID WAVENET(Genetic Algorithm Proportional Integral Derivative Wavelet Neural Network)control technique to control efficiently these angles. The proposed Hybrid GA-PID WAVENET is made through the following process. First, the WAVENET fundamental functions are defined. And their dilation and translation values are adjusted by GA to construct the optimal WAVENET controller. Secondly, the proportional, integral, and derivative gain coefficients of PR controller are tuned optimally. Finally, WAVENET controller which has a good transient characteristic and GA-PE controller which has a good steady state characteristic is adequately combined in hybrid type. Through the computer simulations, it is proved that the Hybrid GA-PE WAVENET control technique has a more excellent dynamic response than PID control technique and GA-PID one.

Microwave Imaging of a Large High Contrast Scatterer by Using the Hybrid Algorithm Combining a Levenberg-Marquardt and a Genetic Algorithm (Levenberg-Marquardt와 유전 알고리듬을 결합한 잡종 알고리듬을 이용한 거대 강산란체의 초고주파 영상)

  • 박천석;양상용
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.5
    • /
    • pp.534-544
    • /
    • 1997
  • The permittivity distribution of a two-dimensional high-contrast object with large size, which leads to the global minimum of cost function, is reconstructed by iteratively using the hybrid algorithm of Levenberg-magquardt algorithm(LMA) plus Genetic Algorithm(GA). The scattered fields calculated in a cost function are expanded in angular spectral modes, of which only effective propagating modes are used. The definition of cost function based on the effective propagating modes enables us to formulate the minimum number of incident waves for the reconstruction of object. It is numerically shown that LMA has an advantage of fast convergence but can't reconstruct a high-contrast object with large size and GA can reconstruct a high-contrast object with large size but has an disadvantage of slow convergence, whereas an inverse scattering technique using the hybrid algorithm adopts only advantages of LMA and GA.

  • PDF

Structural optimization of stiffener layout for stiffened plate using hybrid GA

  • Putra, Gerry Liston;Kitamura, Mitsuru;Takezawa, Akihiro
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.809-818
    • /
    • 2019
  • The current trend in shipyard industry is to reduce the weight of ships to support the reduction of CO2 emissions. In this study, the stiffened plate was optimized that is used for building most of the ship-structure. Further, this study proposed the hybrid Genetic Algorithm (GA) technique, which combines a genetic algorithm and subsequent optimization methods. The design variables included the number and type of stiffeners, stiffener spacing, and plate thickness. The number and type of stiffeners are discrete design variables that were optimized using the genetic algorithm. The stiffener spacing and plate thickness are continuous design variables that were determined by subsequent optimization. The plate deformation was classified into global and local displacement, resulting in accurate estimations of the maximum displacement. The optimization result showed that the proposed hybrid GA is effective for obtaining optimal solutions, for all the design variables.

A Novel Image Classification Method for Content-based Image Retrieval via a Hybrid Genetic Algorithm and Support Vector Machine Approach

  • Seo, Kwang-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.75-81
    • /
    • 2011
  • This paper presents a novel method for image classification based on a hybrid genetic algorithm (GA) and support vector machine (SVM) approach which can significantly improve the classification performance for content-based image retrieval (CBIR). Though SVM has been widely applied to CBIR, it has some problems such as the kernel parameters setting and feature subset selection of SVM which impact the classification accuracy in the learning process. This study aims at simultaneously optimizing the parameters of SVM and feature subset without degrading the classification accuracy of SVM using GA for CBIR. Using the hybrid GA and SVM model, we can classify more images in the database effectively. Experiments were carried out on a large-size database of images and experiment results show that the classification accuracy of conventional SVM may be improved significantly by using the proposed model. We also found that the proposed model outperformed all the other models such as neural network and typical SVM models.

An Application of a Hybrid Genetic Algorithm on Missile Interceptor Allocation Problem (요격미사일 배치문제에 대한 하이브리드 유전알고리듬 적용방법 연구)

  • Han, Hyun-Jin
    • Journal of the military operations research society of Korea
    • /
    • v.35 no.3
    • /
    • pp.47-59
    • /
    • 2009
  • A hybrid Genetic Algorithm is applied to military resource allocation problem. Since military uses many resources in order to maximize its ability, optimization technique has been widely used for analysing resource allocation problem. However, most of the military resource allocation problems are too complicate to solve through the traditional operations research solution tools. Recent innovation in computer technology from the academy makes it possible to apply heuristic approach such as Genetic Algorithm(GA), Simulated Annealing(SA) and Tabu Search(TS) to combinatorial problems which were not addressed by previous operations research tools. In this study, a hybrid Genetic Algorithm which reinforces GA by applying local search algorithm is introduced in order to address military optimization problem. The computational result of hybrid Genetic Algorithm on Missile Interceptor Allocation problem demonstrates its efficiency by comparing its result with that of a simple Genetic Algorithm.

Adaptive Hybrid Genetic Algorithm Approach to Multistage-based Scheduling Problem in FMS Environment (FMS환경에서 다단계 일정계획문제를 위한 적응형혼합유전 알고리즘 접근법)

  • Yun, Young-Su;Kim, Kwan-Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.3
    • /
    • pp.63-82
    • /
    • 2007
  • In this paper, we propose an adaptive hybrid genetic algorithm (ahGA) approach for effectively solving multistage-based scheduling problems in flexible manufacturing system (FMS) environment. The proposed ahGA uses a neighborhood search technique for local search and an adaptive scheme for regulation of GA parameters in order to improve the solution of FMS scheduling problem and to enhance the performance of genetic search process, respectively. In numerical experiment, we present two types of multistage-based scheduling problems to compare the performances of the proposed ahGA with conventional competing algorithms. Experimental results show that the proposed ahGA outperforms the conventional algorithms.

  • PDF